首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetative storage protein (VSP) and VSP mRNA levels in soybean (Glycine max) leaves correlated with the amount of NH4NO3 provided to nonnodulated plants. The mRNA level declined as leaves matured, but high levels of N delayed the decline. This is consistent with the proposed role for VSP in the temporary storage of N. Wounding, petiole girdling, and treatment with methyljasmonate (MeJA) increased VSP mRNA in leaves 24 hours after treatment. The magnitude of the response depended on leaf age and N availability. N deficiency essentially eliminated the response to wounding and petiole girdling. MeJA was almost as effective in N-deficient plants as in those receiving abundant N. Inhibitors of lipoxygenase, the first enzyme in the jasmonic acid biosynthetic pathway, blocked induction by wounding and petiole girdling but not by MeJA. This supports a role for endogenous leaf jasmonic acid (or MeJA) in the regulation of VSP gene expression.  相似文献   

2.
The soybean vegetative storage protein genes (vspA, and vspB) are regulated in a complex manner developmentally and in response to external stimuli such as wounding and water deficit. The proteins accumulate to almost one-half the amount of soluble leaf protein when soybean plants are continually depodded and have been identified as storage proteins because of their abundance and pattern of expression in plant tissues. We have shown that purified VSP homodimers (VSP alpha and VSP beta) and heterodimers (VSP alpha/beta) possess acid phosphatase activity (alpha = 0.3-0.4 units/mg; beta = 2-4 units/mg; alpha/beta = 7-10 units/mg). Specific activities were determined by monitoring o-carboxyphenyl phosphate (0.7 mM) cleavage at pH 5.5 (VSP alpha) or pH 5.0 (VSP alpha/beta and VSP beta) in 0.15 M sodium acetate buffer at 25 degrees C. These enzymes are active over a broad pH range, maintaining greater than 40% of maximal activity from pH 4.0 to 6.5 and having maximal activity at pH 5.0-5.5. They are inactivated by sodium fluoride, sodium molybdate, and heating at 70 degrees C for 10 min. These phosphatases can liberate Pi from several different substrates, including napthyl acid phosphate, carboxyphenyl phosphate, sugar-phosphates, glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, phosphoenolpyruvate, ATP, ADP, PPi, and short chain polyphosphates. VSP alpha/beta cleaved phosphoenolpyruvate, ATP, ADP, PPi, and polyphosphates most efficiently. Apparent Km and Vmax values at 25 degrees C and pH 5.0 were 42 microM and 2.0 mumol/min/mg, 150 microM and 4.2 mumol/min/mg, and 420 microM and 4.1 mumol/min/mg, for tetrapolyphosphate, pyrophosphate, and phosphoenolpyruvate, respectively.  相似文献   

3.
Lectins are carbohydrate-binding proteins that occur widely among plants. Lectins of plant vegetative tissues are less well characterized than those of seeds. Previously, a protein of soybean (Glycine max [L.] Merr.) leaves was shown to possess properties similar to the seed lectin. Here we show that the N-terminal amino acid sequence of this protein shares 63% identity with the seed lectin. Immunoblot analysis indicated that the protein occurs in leaves, petioles, stems, and cotyledons of seedlings but not in seeds. These observations prompted designation of the protein as a soybean vegetative lectin (SVL). Immunohistochemical localization in leaves indicated that SVL was localized to the vacuoles of bundle-sheath and paraveinal mesophyll cells. Removal of sink tissues or exposure to atmospheric methyl jasmonate caused increased levels of SVL in leaves and cotyledons. Co-precipitation of SVL and the soybean vegetative storage protein (VSP) during purification suggested an interaction between these proteins. SVL-horseradish peroxidase conjugate bound to dot blots of VSP or SVL, and binding was inhibited by porcine stomach mucin and heparin but not simple carbohydrates. Binding between SVL and VSP and similarities in localization and regulation support a possible in vivo interaction between these proteins.  相似文献   

4.
Soybean (Glycine max L. Merr.) contains two related and abundant proteins, VSP alpha and VSP beta, that have been called vegetative storage proteins (VSP) based on their pattern of accumulation, degradation, tissue localization, and other characteristics. To determine whether these proteins play a critical role in sequestering N and other nutrients during early plant development, a VspA antisense gene construct was used to create transgenic plants in which VSP expression was suppressed in leaves, flowers, and seed pods. Total VSP was reduced at least 50-fold due to a 100-fold reduction in VSP alpha and a 10-fold reduction in VSP beta. Transgenic lines were grown in replicated yield trials in the field in Nebraska during the summer of 1999 and seed harvested from the lines was analyzed for yield, protein, oil, and amino acid composition. No significant difference (alpha = 0.05) was found between down-regulated lines and controls for any of the traits tested. Young leaves of antisense plants grown in the greenhouse contained around 3% less soluble leaf protein than controls at the time of flowering. However, total leaf N did not vary. Withdrawing N from plants during seed fill did not alter final seed protein content of antisense lines compared with controls. These results indicate that the VSPs play little if any direct role in overall plant productivity under typical growth conditions. The lack of VSPs in antisense plants might be partially compensated for by increases in other proteins and/or non-protein N. The results also suggest that the VSPs could be genetically engineered or replaced without deleterious effects.  相似文献   

5.
Levels of several polypeptides in addition to the vegetative storage protein (VSP) increase in soybean leaves following depodding. Two of these polypeptides interact specifically with antibodies raised against the seed lectins of Phaseolus vulgaris and soybean. The two polypeptides, which had apparent molecular masses of 29,000 daltons and 33,000 daltons, were present in the sink-deprived plants but not in control podded plants and were the subunit polypeptides of a glycoprotein designated lectin-related protein (LRP). Soybean LRP was purified to near homogeneity by a combination of ammonium sulfate precipitation and gel filtration. Dialysis of the resuspended ammonium sulfate precipitate caused LRP to reprecipitate, and LRP was soluble only in the presence of molar NaCl. The native relative molecular mass of LRP was 119,000 daltons, a size consistent with a tetrameric organization of the two polypeptides. LRP precipitated during dialysis in association with a 28,000 dalton polypeptide. The protein coprecipitating with LRP was identified as the dimer of the 28,000 dalton subunit of VSP, one of three native isomeric forms of VSP occurring in leaves of depodded plants. Although the specific association between LRP and VSP was intriguing, an in vivo interaction between LRP and VSP was doubtful. LRP was shown to be immunologically similar to soybean agglutinin but did not have detectable hemagglutinating activity. LRP also was shown to be made up of polypeptides distinct from soybean agglutinin.  相似文献   

6.
Leaves from 12 legume species representing two subtribes were examined by various techniques for the presence of vegetative storage proteins (VSPs) similar to the 27, 29, and 94 kD VSPs of soybean. Polyacrylamide gel electrophoresis (PAGE) of leaf protein followed by western immunoblotting using antibody that recognizes soybean VSP94, a lipoxygenase, demonstrated that this protein is present in six of the nine species tested. Blotting with antibody to soybean VSP27/29, which are glycoproteins, gave labelling in seven species and glycoprotein affino-blots showed that glycosylated proteins ranging around 27 to 29 kD were present in all nine species examined. Immunocytochemical localization studies of eight species demonstrated that proteins antigenically similar to VSP94 and VSP27/29 are specifically accumulated in the vacuole of paraveinal mesophyll (PVM) cells. They were not detectable at significant levels in other mesophyll cells using this technique. Comparisons of protein compositions of isolated PVM and mesophyll protoplasts from seven species further confirmed the specialized nature of the PVM. VSP94 and proteins ranging from 25 to 35 kD molecular mass were the major proteins of PVM of all but one species while Rubisco was quite low in amount compared to mesophyll protoplasts. The results show that VSP synthesis and accumulation is a general feature of legume leaves containing a PVM layer and indicate that the PVM plays a specialized role in nitrogen metabolism and partitioning in these species.  相似文献   

7.
Exogenous applications of gibberellins (GAs) increased the extractable activity of leaf sucrose phosphate synthase (SPS) in soybean (Glycine max [L.]) and spinach (Spinacia oleracea [L.]). The response to GA applications was detectable within 2 h postapplication and was still observed 6 h, 24 h, and 7 d after treatment. When paclobutrazol, a GA biosynthesis inhibitor, was applied to intact soybean and spinach plants, decreased extractable SPS activity resulted within 24 h following the treatment. Different methods of GA application (spray, injection, capillary wick, and excised leaf systems) produced similar effects on SPS activity of soybean leaves. Protein synthesis in soybean leaves appeared to be necessary for GA-promoted SPS activity because gibberellic acid only partially reversed the inhibitory effect of pretreatment with cycloheximide. Levels of SPS protein from crude extracts of spinach plants were measured by a dot blot technique using monoclonal antibodies against SPS. Application of gibberellic acid to spinach leaves increased levels of SPS protein 2 h, 24 h, and 7 d after treatment. The results suggest that, in both soybean and spinach, GA is one of the endogenous hormonal factors that regulate the steady-state level of SPS protein and, hence, its activity.  相似文献   

8.
拟南芥VSPl蛋白是一种具有酸性磷酸酶活性的植物防御蛋白。为利用硒原子的反常散射获取VSPl蛋白晶体X射线衍射的相位信息,以质粒pET-22b为表达载体,大肠杆菌B834(DE3)为宿主茵,在含有硒代甲硫氨酸的M9培养基中诱导表达VSPl硒代蛋白衍生物。通过Ni-NTA亲和层析纯化的目的蛋白经SDS-PAGE检验,纯度在95%以上。通过优化VSPl母体蛋白晶体的生长条件,获得了可衍射的硒代蛋白晶体。  相似文献   

9.
Alkaline invertase from sprouting soybean (Glycine max) hypocotyls was purified to apparent electrophoretic homogeneity by consecutive use of DEAE-cellulose, green 19 dye, and Cibacron blue 3GA dye affinity chromatography. This protocol produced about a 100-fold purification with about a 11% yield. The purified protein had a specific activity of 48 mumol of glucose produced mg-1 protein min-1 (pH 7.0) and showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) (58 kDa) and in native PAGE, as indicated by both protein and activity staining. The native enzyme molecular mass was about 240 kDa, suggesting a homotetrameric structure. The purified enzyme exhibited hyperbolic saturation kinetics with a Km (sucrose) near 10 mM and the enzyme did not utilize raffinose, maltose, lactose, or cellibose as a substrate. Impure alkaline invertase preparations, which contained acid invertase activity, on contrast, showed biphasic curves versus sucrose concentration. Combining equal activities of purified alkaline invertase with acid invertase resulted in a biphasic response, but there was a transition to hyperbolic saturation kinetics when the activity ratio, alkaline: acid invertase, was increased above unity. Alkaline invertase activity was inhibited by HgCl2, pridoxal phosphate, and Tris with respective Ki values near 2 microM, 5 microM, and 4 mM. Glycoprotein staining (periodic acid-Schiff method) was negative and alkaline invertase did not bind to two immobilized lectins, concanavalin A and wheat germ agglutinin; hence, the enzyme apparently is not a glycoprotein. The purified alkaline invertase, and a purified soybean acid invertase, was used to raise rabbit polyclonal antibodies. The alkaline invertase antibody preparation was specific for alkaline invertase and cross-reacted with alkaline invertases from other plants. Neither purified soybean alkaline invertases nor the crude enzyme from several plants cross-reacted with the soybean acid invertase antibody.  相似文献   

10.
通过PCR扩增从拟南芥cDNA文库中得到VSP2蛋白的编码序列,将其构建到原核表达载体pET-22b上,并在大肠杆菌BL21菌株中实现高效可溶表达。经过Ni-NTA亲和层析一步纯化,获得电泳纯的重组VSP2蛋白。以pNPP为底物检测,该蛋白具有酸性磷酸酶活性,反应的最适pH值4.5,最适温度为45oC,Km值为26.2mM。重组VSP2蛋白表达量高,纯化后均一性好,适于蛋白晶体生长。  相似文献   

11.
A proteinase present in intercellular wash fluids from leaves of Glycine max has been purified 600-fold to electrophoretic homogeneity. The native protein is monomeric with a molecular mass of 60 kD, as estimated by denaturing gel electrophoresis, and has an isoelectric point of 7.7. The enzyme has a pH optimum of 9.5 when assayed with Azocoll as a substrate. The proteolytic activity is inhibited by p-chloromercuribenzoic acid and mercuric chloride and requires the presence of reducing agents. The enzyme activity is refractory to other classical sulfhydryl proteinases. The soybean leaf endoproteinase is present within the extracellular space of young leaves, and a portion is bound to the cell wall. Western blot analysis and activity measurements show that the enzyme is present only during the first 15 d postemergence of the leaf and is therefore under strict developmental control. We suggest that the enzyme may play a critical role in the extracellular milieu during rapid cell growth and leaf expansion.  相似文献   

12.
An acid phosphatase activity that displayed phosphotyrosyl-protein phosphatase has been purified from bovine cortical bone matrix to apparent homogeneity. The overall yield of the enzyme activity was greater than 25%, and overall purification was approximately 2000-fold with a specific activity of 8.15 mumol of p-nitrophenyl phosphate hydrolyzed per min/mg of protein at pH 5.5 and 37 degrees C. The purified enzyme was judged to be purified based on its appearance as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (silver staining technique). The enzyme could be classified as a band 5-type tartrate-resistant acid phosphatase isoenzyme. The apparent molecular weight of this enzyme activity was determined to be 34,600 by gel filtration and 32,500 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of reducing agent, indicating that the active enzyme is a single polypeptide chain. Kinetic evaluations revealed that the acid phosphatase activity appeared to catalyze its reaction by a pseudo Uni Bi hydrolytic two-step transfer reaction mechanism and was competitively inhibited by transition state analogs of Pi. The enzyme activity was also sensitive to reducing agents and several divalent metal ions. Substrate specificity evaluation showed that this purified bovine skeletal acid phosphatase was capable of hydrolyzing nucleotide tri- and diphosphates, phosphotyrosine, and phosphotyrosyl histones, but not nucleotide monophosphates, phosphoserine, phosphothreonine, phosphoseryl histones, or low molecular weight phosphoryl esters. Further examination of the phosphotyrosyl-protein phosphatase activity indicated that the optimal pH at a fixed substrate concentration (50 nM phosphohistones) for this activity was 7.0. Kinetic analysis of the phosphotyrosyl-protein phosphatase activity indicated that the purified enzyme had an apparent Vmax of approximately 60 nmol of [32P]phosphate hydrolyzed from [32P]phosphotyrosyl histones per min/mg of protein at pH 7.0 and an apparent Km for phosphotyrosyl proteins of approximately 450 nM phosphate group. In summary, the results of these studies represent the first purification of a skeletal acid phosphatase to apparent homogeneity. Our observation that this purified bovine bone matrix acid phosphatase was able to dephosphorylate phosphotyrosyl proteins at neutral pH is consistent with our suggestion that this enzyme may function as a phosphotyrosyl-protein phosphatase in vivo.  相似文献   

13.
The effect of Pi on the properties of phosphoenolpyruvate carboxylase (PEPC) from Amaranthus hypochondriacus, a NAD-ME type C4 plant, was studied in leaf extracts as well as with purified protein. Efforts were also made to modulate the Pi status of the leaf by feeding leaves with either Pi or mannose. Inclusion of 30 mM Pi during the assay enhanced the enzyme activity in leaf extracts or of purified protein by >2-fold. The effect of Pi on the enzyme purified from dark-adapted leaves was more pronounced than that from light-adapted ones. The Ki for malate increased >2.3-fold and >1.9-fold by Pi in the enzyme purified from dark-adapted leaves and light-adapted leaves, respectively. Pi also induced an almost 50-60% increase in Km for PEP or Ka for glucose-6-phosphate. Feeding the leaves with Pi also increased the activity of PEPC in leaf extracts, while decreasing the malate sensitivity of the enzyme. On the other hand, Pi sequestering by mannose marginally decreased the activity, while markedly suppressing the light activation, of PEPC. There was no change in phosphorylation of PEPC in leaves of A. hypochondriacus due to the feeding of 30 mM Pi. However, feeding with mannose decreased the light-enhanced phosphorylation of PEPC. The marked decrease in malate sensitivity of PEPC with no change in phosphorylation state indicates that the changes induced by Pi are independent of the phosphorylation of PEPC. It is suggested here that Pi is an important factor in regulating PEPC in vivo and could also be used as a tool to analyse the properties of PEPC.  相似文献   

14.
Szoke A  Miao GH  Hong Z  Verma DP 《Plant physiology》1992,99(4):1642-1649
The expression of Δ1-pyrroline-5-carboxylate reductase (P5CR) gene was found to be higher in soybean root nodules than in leaves and roots, and its expression in roots appeared to be osmoregulated (AJ Delauney, DPS Verma [1990] Mol Gen Genet 221: 299-305). P5CR was purified to homogeneity as a monomeric protein of 29 kilodaltons by overexpression of a soybean P5CR cDNA clone in Escherichia coli. The pH optimum of the purified P5CR was altered by increasing the salt concentration, and maximum enzyme activity was attainable at a lower pH under high salt (0.2-1 molar NaCl). Kinetic studies of the purified enzyme suggested that nicotinamide adenine dinucleotide phosphate+ inhibited P5CR activity, whereas nicotinamide adenine dinucleotide+ did not. Subcellular fractionation and antibodies raised against purified soybean P5CR were used to investigate location of the enzyme in different parts of soybean as well as in leaves of transgenic tobacco plants synthesizing soybean P5CR. P5CR activity was present in cytoplasm of soybean roots and nodules as well as in leaves, but in leaves, about 15% of the activity was detected in the plastid fraction. The location of P5CR was further confirmed by western blot assay of the proteins from cytosol and plastid fractions of different parts of the plant. Expression of soybean nodule cytosolic P5CR in transgenic tobacco under the control of cauliflower mosaic virus 35S promoter led to the accumulation of this protein exclusively in the cytoplasm, suggesting that the chloroplastic activity may be due to the presence of a plastid form of the enzyme. The different locations of P5CR in root and leaf suggested that proline may be synthesized in different subcellular compartments in root and leaf. Proline concentration was not significantly increased in transgenic plants exhibiting high level P5CR activity, indicating that reduction of P5C is not a rate-limiting step in proline production.  相似文献   

15.
Leaf Senescence and Abscisic Acid in Leaves of Field-grown Soybean   总被引:1,自引:0,他引:1       下载免费PDF全文
Leaf senescence in field-grown soybean (Merrill) as defined by the period after full expansion, was studied by measuring abscisic acid (ABA), total soluble protein, and chlorophyll in leaves through the later part of the growing season. ABA concentrations increased significantly at the end of the season when leaves had started to turn yellow, well after total soluble protein and chlorophyll had started to decline. The results indicate that events occurring before leaf yellowing are more significant in evaluating leaf senescence since the yellowing condition and rise in ABA are effects of changes in physiological activity beginning when leaves are still green.  相似文献   

16.
Rat bone was extracted with KCl and Triton X-100, and a tartrate-resistant acid phosphatase activity was purified by protamine sulfate precipitation, ion-exchange chromatography (CM-cellulose), and gel filtration on Sephadex G-200 according to previously described procedures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining demonstrated a major band with an apparent monomer molecular size of approximately 14,000 Da. The enzyme is active with p-nitrophenylphosphate (p-NPP) but exhibits a 5- to 10-fold higher affinity towards several nucleotides of which ATP and ADP are the most readily hydrolyzed substrates based on kinetic studies. Based on sensitivity towards proteolytic treatment and detergent removal, as well as pH-optimum studies, a single enzyme was found to be responsible for activity towards nucleotide phosphates as well as p-NPP. This nucleotide tri- and diphosphatase constitutes around 15% of the total acid phosphatase activity in rat bone. The activity with ATP as substrate in contrast to that with p-NPP was inhibited in a noncompetitive fashion by MgCl2, sodium metavanadate, and p-chloromercuribenzoate. Enzyme activity with p-NPP and ATP is dependent on the presence of KCl and detergent and is activated by Fe3+ and ascorbate. The reported characteristics of the enzyme suggest that it functions as a unique membrane acid ATPase.  相似文献   

17.
6-BA延缓大豆叶片衰老的作用与膜蛋白磷酸化状态的关系   总被引:1,自引:0,他引:1  
蛋白激酶(proteinkinase,PK)和蛋白磷酸酯酶(pIDt6inphOSpha~,PP)是生物体内催化蛋白质磷酸化/脱磷酸化过程的两种重要酶类。目前已有越来越多的实验证据表明:这种可逆的磷酸化/脱磷酸化过程所导致的蛋白质(酶)活性的改变是生物体内信号传导过程中的重要环节(Hunter1995)。已有一些实验系统涉及了植物激素对于植物蛋白磷酸化过程的影响(Mi-zogUchi等1994,Sano和Youssefian1994),并有一些与此相关的蛋白激酶和蛋白磷酸酯酶的基因被克隆(kleber等1993,temp等1994)。细胞分裂素延缓植物叶片衰老的作用早已被各种实…  相似文献   

18.
Lin PP 《Plant physiology》1980,66(3):368-374
A soybean histone-type protein kinase was used to prepare 32P-labeled histone H1 as substrate for purification and characterization of a phosphoprotein phosphatase (EC 3.1.3.16) from soybean hypocotyls. The phosphatase has been purified 169-fold by ammonium sulfate fractionation, ethanol precipitation, and chromatography on Sephadex G-150, DEAE-Sephadex A-25 and Sephadex G-100. The activity of the phosphoprotein phosphatase is distinct from that of acid and alkaline phosphatases (EC 3.1.3.1) as well as from that of nucleotidases. The final enzyme preparation does not contain histone protease activity, although it can be detected during the early stages of purification. The protease(s) apparently can attack phosphorylated histone H1, indicating that phosphorylation does not protect the protein against proteolytic degradation.  相似文献   

19.
Soybean root nodule acid phosphatase.   总被引:3,自引:0,他引:3       下载免费PDF全文
A R Penheiter  S M Duff    G Sarath 《Plant physiology》1997,114(2):597-604
Acid phosphatases are ubiquitous enzymes that exhibit activity against a variety of substrates in vitro, although little is known about their intracellular function. In this study, we report the isolation, characterization, and partial sequence of the major acid phosphatase from soybean (Glycine max L.) root nodules. The phosphatase was purified predominantly as a heterodimer with subunits of 28 and 31 kD; homodimers of both subunits were also observed and exhibited phosphatase activity. In addition to the general phosphatase substrate, p-nitrophenyl phosphate, the heterodimeric form of the enzyme readily hydrolyzed 5'-nucleotides, flavin mononucleotide, and O-phospho-L-Tyr. Low or negligible activity was observed with ATP or polyphosphate. Purified nodule acid phosphatase was stimulated by magnesium, inhibited by calcium and EDTA, and competitively inhibited by cGMP and cAMP with apparent Ki values of 7 and 12 microM, respectively. Partial N-terminal and internal sequencing of the nodule acid phosphatase revealed homology to the soybean vegetative storage proteins. There was a 17-fold increase in enzyme activity and a noticeable increase in protein levels detected by immunoblotting methods during nodule development. Both of these parameters were low in young nodules and reached a peak in mature, functional nodules, suggesting that this enzyme is important for efficient nodule metabolism.  相似文献   

20.
NO (nitric oxide) production from sunflower plants (Helianthus annuus L.), detached spinach leaves (Spinacia oleracea L.), desalted spinach leaf extracts or commercial maize (Zea mays L.) leaf nitrate reductase (NR, EC 1.6.6.1) was continuously followed as NO emission into the gas phase by chemiluminescence detection, and its response to post-translational NR modulation was examined in vitro and in vivo. NR (purified or in crude extracts) in vitro produced NO at saturating NADH and nitrite concentrations at about 1% of its nitrate reduction capacity. The K(m) for nitrite was relatively high (100 microM) compared to nitrite concentrations in illuminated leaves (10 microM). NO production was competitively inhibited by physiological nitrate concentrations (K(i)=50 microM). Importantly, inactivation of NR in crude extracts by protein phosphorylation with MgATP in the presence of a protein phosphatase inhibitor also inhibited NO production. Nitrate-fertilized plants or leaves emitted NO into purified air. The NO emission was lower in the dark than in the light, but was generally only a small fraction of the total NR activity in the tissue (about 0.01-0.1%). In order to check for a modulation of NO production in vivo, NR was artificially activated by treatments such as anoxia, feeding uncouplers or AICAR (a cell permeant 5'-AMP analogue). Under all these conditions, leaves were accumulating nitrite to concentrations exceeding those in normal illuminated leaves up to 100-fold, and NO production was drastically increased especially in the dark. NO production by leaf extracts or intact leaves was unaffected by nitric oxide synthase inhibitors. It is concluded that in non-elicited leaves NO is produced in variable quantities by NR depending on the total NR activity, the NR activation state and the cytosolic nitrite and nitrate concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号