首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microcin B17 (MccB17) is a peptide-based bacterial toxin that targets DNA gyrase, the bacterial enzyme that introduces supercoils into DNA. The site and mode of action of MccB17 on gyrase are unclear. We review what is currently known about MccB17-gyrase interactions and summarise approaches to understanding its mode of action that involve modification of the toxin. We describe experiments in which treatment of the toxin at high pH leads to the deamidation of two asparagine residues to aspartates. The modified toxin was found to be inactive in vivo and in vitro, suggesting that the Asn residues are essential for activity. Following on from these studies we have used molecular modelling to suggest a 3D structure for microcin B17. We discuss the implications of this model for MccB17 action and investigate the possibility that it binds metal ions.  相似文献   

2.
Pierrat OA  Maxwell A 《Biochemistry》2005,44(11):4204-4215
Microcin B17 (MccB17) is a DNA gyrase poison; in previous work, this bacterial toxin was found to slowly and incompletely inhibit the reactions of supercoiling and relaxation of DNA by gyrase and to stabilize the cleavage complex, depending on the presence of ATP and the DNA topology. We now show that the action of MccB17 on the gyrase ATPase reaction and cleavage complex formation requires a linear DNA fragment of more than 150 base pairs. MccB17 is unable to stimulate the ATPase reaction by stabilizing the weak interactions between short linear DNA fragments (70 base pairs or less) and gyrase, in contrast with the quinolone ciprofloxacin. However, MccB17 can affect the ATP-dependent relaxation of DNA by gyrase lacking its DNA-wrapping or ATPase domains. From these findings, we propose a mode of action of MccB17 requiring a DNA molecule long enough to allow the transport of a segment through the DNA gate of the enzyme. Furthermore, we suggest that MccB17 may trap a transient intermediate state of the gyrase reaction present only during DNA strand passage and enzyme turnover. The proteolytic signature of MccB17 from trypsin treatment of the full enzyme requires DNA and ATP and shows a protection of the C-terminal 47-kDa domain of gyrase, indicating the involvement of this domain in the toxin mode of action and consistent with its proposed role in the mechanism of DNA strand passage. We suggest that the binding site of MccB17 is in the C-terminal domain of GyrB.  相似文献   

3.
The maturation pathway of microcin B17, a peptide inhibitor of DNA gyrase   总被引:5,自引:1,他引:4  
The maturation pathway of microcin B17 (MccB17), a ribosomally synthesized peptide antibiotic which inhibits DNA gyrase, has been characterized. Synthesis of MccB17 involves several steps beginning with the translation of the MccB17 structural gene, mcbA, to yield a 69 amino acid precursor, preMccB17. PreMccB17 is then modified and folded by the action of three gene products, McbBCD, to yield proMccB17. Mutations in mcbA were isolated that permit modifications of the resulting mutant peptides, but prevent folding, suggesting that modification and folding are sequential steps. ProMccB17 is subsequently converted to MccB17 by removal of the W-terminal 26-amino-acid leader by a chromosomally encoded protease. Removal of the leader resulted in aggregation of the peptide, suggesting that the leader may function to maintain peptide solubility during synthesis in the cell. Finally, polyclonal antibodies raised against MccB17 recognize both MccB17 and proMccB17, but do not recognize preMccB17. This demonstrates the dramatic structural changes that result from the modifications and has been used to distinguish intermediates in the steps of maturation.  相似文献   

4.
Microcin B17 (MccB17) is a bactericidal peptide antibiotic which inhibits DNA replication. Two Escherichia coli MccB17 resistant mutants were isolated and the mutations were shown to map to 83 min of the genetic map. Cloning of the mutations and Tn5 insertional analysis demonstrated that they were located inside gyrB. The approximate location of the mutations within gyrB was determined by constructing hybrid genes, as a previous step to sequencing. Both mutations were shown to consist of a single AT----GC transition at position 2251 of the gene, which produces a Trp751----Arg substitution in the amino acid sequence of the GyrB polypeptide. The inhibitory effect of MccB17 on replicative cell-free extracts was assayed. In this in vitro system, interaction of MccB17 with a component of the extracts induced double-strand cleavage of plasmid DNA. In vivo treatment with MccB17 also induced a well-defined cleavage pattern on chromosomal DNA. These effects were not observed with a MccB17-resistant, gyrB mutant. Altogether, our results indicate that MccB17 blocks DNA gyrase by trapping an enzyme-DNA cleavable complex. Thus, the mode of action of this peptide antibiotic resembles that of quinolones and a variety of antitumour drugs currently used in cancer chemotherapy. MccB17 is the first peptide shown to inhibit a type II DNA topoisomerase.  相似文献   

5.
Microcin B17 is a 3.1-kDa bactericidal peptide; the putative target of this antibiotic is DNA gyrase. Microcin B17 has no detectable effect on gyrase-catalysed DNA supercoiling or relaxation activities in vitro and is unable to stabilise DNA cleavage in the absence of nucleotides. However, in the presence of ATP, or the non-hydrolysable analogue 5'-adenylyl beta,gamma-imidodiphosphate, microcin B17 stabilises a gyrase-dependent DNA cleavage complex in a manner reminiscent of quinolones, Ca(2+), or the bacterial toxin CcdB. The pattern of DNA cleavage produced by gyrase in the presence of microcin B17 is different from that produced by quinolones and more closely resembles Ca(2+)-mediated cleavage. Several gyrase mutants, including well-known quinolone-resistant mutants, are cross resistant to microcin-induced DNA cleavage. We suggest that microcin exerts its effects through a mechanism that has similarities to those of both the bacterial toxin CcdB and the quinolone antibacterial agents.  相似文献   

6.
We have examined the role of the DNA gyrase B protein in cleavage and religation of DNA using site-directed mutagenesis. Three aspartate residues and a glutamate residue: E424, D498, D500 and D502, thought to co-ordinate a magnesium ion, were mutated to alanine; in addition, the glutamate residue and one aspartate residue were mutated to glutamine and asparagine, respectively. We have shown that these residues are important for the cleavage-religation reaction and are likely to be involved in magnesium ion co-ordination. On separate mutation of two of these aspartate residues to cysteine or histidine, the metal ion preference for the DNA relaxation activity of gyrase changed from magnesium to manganese (II). We present evidence to support the idea that cleavage of each DNA strand involves two or more metal ions, and suggest a scheme for the DNA cleavage chemistry of DNA gyrase involving two metal ions.  相似文献   

7.
Effects of microcin B17 on microcin B17-immune cells   总被引:5,自引:0,他引:5  
When microcin B17-immune cells are treated with microcin B17 they show many of the physiological effects displayed by microcin B17-sensitive cells treated in the same way. DNA replication stops immediately and several SOS functions are subsequently induced. In sensitive cells these effects are irreversible and lead to cell death, whereas in immune cells they are reversible and there is no loss of viability. This is an unusual mechanism of immunity because it does not prevent the primary action of the microcin. The implications of this mechanism concerning the mode of action of microcin B17 and the induction of the SOS system are discussed.  相似文献   

8.
Microcin B17 (McB) is a 43-amino acid antibacterial peptide targeting the DNA gyrase. The McB precursor is ribosomally produced and then post-translationally modified by the McbBCD synthase. Active mature McB contains eight oxazole and thiazole heterocycles. Here, we show that a major portion of mature McB contains an additional unusual modification, a backbone ester bond connecting McB residues 51 and 52. The modification results from an N → O shift of the Ser(52) residue located immediately downstream of one of McB thiazole heterocycles. We speculate that the N,O-peptidyl shift undergone by Ser(52) is an intermediate of post-translational modification reactions catalyzed by the McbBCD synthase that normally lead to formation of McB heterocycles.  相似文献   

9.
Plasmid genes required for microcin B17 production.   总被引:15,自引:9,他引:6       下载免费PDF全文
The production of the antibiotic substance microcin B17 (Mcc) is determined by a 3.5-kilobase DNA fragment from plasmid pMccB17. Several Mcc- mutations on plasmid pMccB17 were obtained by both transposon insertion and nitrosoguanidine mutagenesis. Plasmids carrying these mutations were tested for their ability to complement Mcc- insertion or deletion mutations on pMM102 (pMM102 is a pBR322 derivative carrying the region encoding microcin B17). Results from these experiments indicate that at least four plasmid genes are required for microcin production.  相似文献   

10.
Evidence that colicin X is microcin B17.   总被引:7,自引:1,他引:6       下载免费PDF全文
The DNA replication inhibitor microcin B17 is a peptide antibiotic produced by Escherichia coli strains carrying plasmid pMccB17. Here we present evidence that antibiotic activities previously named colicin X are probably identical to microcin B17. Our results include comparison of the conditions of production of the antibiotics, their mode of action, cross-immunity of producer strains, and cross-resistance of resistant mutants. Plasmids encoding colicin X have been identified and shown to have a region of significant homology with the microcin B17-producing region of pMccB17 DNA.  相似文献   

11.
Microcin B17 is a low-molecular-weight protein that inhibits DNA replication in a number of enteric bacteria. It is produced by bacterial strains which harbor a 70-kilobase plasmid called pMccB17. Four plasmid genes (named mcbABCD) are required for its production. The product of the mcbA gene was identified by labelling minicells. The mcbA gene product was slightly larger when a mutation in any of the other three production genes was present. This indicates that these genes are involved in processing the primary mcbA product to yield the active molecule. The mcbA gene product predicted from the nucleotide sequence has 69 amino acids including 28 glycine residues. Microcin B17 was extracted from the cells by boiling in 100 mM acetic acid, 1 mM EDTA, and purified to homogeneity in a single step by high-performance liquid chromatography through a C18 column. The N-terminal amino acid sequence and amino acid composition demonstrated that mcbA is the structural gene for microcin B17. The active molecule is a processed product lacking the first 26 N-terminal residues. The 43 remaining residues include 26 glycines. While microcin B17 is an exported protein, the cleaved N-terminal peptide does not have the characteristic properties of a "signal sequence", which suggests that it is secreted by a mechanism different from that used by most secreted proteins of E. coli.  相似文献   

12.
DNA gyrase introduces negative supercoiling into circular DNA by catalyzing the passage of one DNA segment through another. The efficiency of the reaction is many times higher than that of other topological transformations. We analyze, by a computer simulation, the reaction selectivity for a model of DNA gyrase action that assumes existence of a free loop between the G- and T- DNA segments participating in the reaction. A popular model of this type assumed that the selectivity can be provided by the conformation of the DNA segment wrapped around the enzyme into the right-handed helix turn (G-segment). We simulated the distribution of the reaction products for this model. Equilibrium sets of DNA conformations with one segment of the double helix wrapped around the enzyme were constructed. From these sets we selected conformations that had a second segment properly juxtaposed with the first one. Assuming that the juxtapositions result in the strand-passing reaction, we calculated the reaction products for all these conformations. The results show that different products have to be formed if the enzyme acts according to the model. This conclusion can be extended for any model with a free loop between the G- and T-segments. An alternative model that is consistent with the major experimental observations and the computational analysis, is suggested.  相似文献   

13.
The microcin B17 synthetase converts glycine, serine, and cysteine residues in a polypeptide precursor into oxazoles and thiazoles during the maturation of the Escherichia coli antibiotic Microcin B17. This multimeric enzyme is composed of three subunits (McbB, McbC, and McbD), and it employs both ATP and FMN as cofactors. The McbB subunit was purified as a fusion with the maltose-binding protein (MBP), and metal analysis revealed that this protein binds 0.91+/-0.17 zinc atoms. Upon incubation of MBP-McbB with excess zinc, the stoichiometry increased to two atoms of zinc bound, but metal binding to the second site resulted in a decrease in the heterocyclization activity when MBP-McbB was reconstituted with the other components of the synthetase. Apo-protein was prepared by using p-hydroxymercuriphenylsulfonic acid (PMPS), and loss of the metal caused a severe reduction in enzymatic activity. However, if dithiothreitol was added to the PMPS reactions within a few minutes, enzymatic activity was retained and MBP-McbB could be reconstituted with zinc. Spectroscopic analysis of the cobalt-containing protein and extended X-ray absorption fine structure analysis of the zinc-containing protein both provide evidence for a tetrathiolate coordination sphere. Site-directed mutants of MBP-McbB as well as the synthetase tagged with the calmodulin-binding peptide were constructed. Activity assays and metal analysis were used to determine which of the six cysteines in McbB are metal ligands. These results suggest that the zinc cofactor in McbB plays a structural role.  相似文献   

14.
DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid.   总被引:34,自引:0,他引:34  
Treatments in vivo of Escherichia coli with oxolinic acid, a potent inhibitor of DNA gyrase and DNA synthesis, lead to DNA cleavage when extracted chromosomes are incubated with sodium dodecyl sulfate. This DNA breakage has properties similar to those obtained in vitro with DNA gyrase reaction mixtures designed to assay production of supertwists: it is oxolinic acid-dependent, sodium dodecyl sulfate-activated, and at saturating drug concentrations produces double-strand DNA cleavage with a concommitant tight association of protein and DNA. In addition, identical treatments performed on a nalA mutant strain exhibit no DNA cleavage. Thus the DNA cleavage sites probably correspond to chromosomal DNA gyrase sites. Sedimentation measurements of the DNA cleavage products indicate that there are approximately 45 DNA breaks per chromosome. This value is similar to the number of domains of supercoiling found in isolated Escherichia coli chromosomes, suggesting one gyrase site per domain. At low oxolinic acid concentrations single-strand cleavages predominate after sodium dodecyl sulfate treatment, and the inhibition of DNA synthesis parallels the number of sites that obtain a single-strand scission. Double-strand breaks arise from the accumulation of single-strand cleavages in accordance with a model where each cleavage site contains two independent drug targets, one on each DNA strand. Since the nicking-closing subunit of gyrase is the target of oxolinic acid in vitro, we suggest that each gyrase site contains two nicking-closing subunits, one on each DNA strand, and that DNA synthesis requires both to be functional.  相似文献   

15.
Using isolated rat liver mitochondria, which have previously been shown to carry out true replicative DNA synthesis, we have obtained results which are in accord with the presence and functioning of a DNA gyrase in this organelle. The effects of the Escherichia coli DNA gyrase inhibitors, novobiocin, coumermycin, nalidixic acid and oxolinic acid, upon mtDNA replication suggest the involvement of the putative mitochondrial enzyme in various aspects of this process. First, the preferential inhibition of [3H]dATP incorporation into highly supercoiled DNA together with the appearance of labeled, relaxed DNA are consistent with the involvement of a gyrase in the process of generating negative supercoils in mature mtDNA. Second, the overall depression of incorporation of labeled dATP into mtDNA, including the reduction of radioactivity incorporated into replicative intermediates, suggests a ‘swivelase’ role for the putative gyrase, and this hypothesis is further supported by results obtained on sucrose gradient centrifugation of heat-denatured, d-loop mtDNA. Here, the synthesis of the completed clean circles is inhibited while 9 S initiator strand synthesis is not, suggesting that chain elongation is blocked by the gyrase inhibitors.  相似文献   

16.
17.
Microcin B17 is a peptide antibiotic that inhibits DNA replication in Escherichia coli by targeting DNA gyrase. Previously, two independently isolated microcin B17-resistant mutants were shown to harbor the same gyrB point mutation that results in the replacement of tryptophan 751 by arginine in the GyrB polypeptide. We used site-directed mutagenesis to construct mutants in which tryptophan 751 was deleted or replaced by other amino acids. These mutants exhibit altered DNA gyrase activity and different levels of resistance to microcin B17.  相似文献   

18.
Oxolinic acid forms complexes with gyrase and DNA in such a way that subsequent denaturation of gyrase reveals DNA cleavage. Cleavage sites were mapped in a 10,000 base-pair region of the Escherichia coli chromosome containing the dnaA, dnaN, recF, and gyrB genes. Twenty-four cleavage sites were identified. The sites were cleaved at different frequencies, with the most frequent cleavage occurring within gyrB. Not all sites were equally sensitive to oxolinic acid concentration, some sites exhibited an altered cleavage frequency when the gyrB225 delta topA mutant strain DM800 was compared with wild-type cells, and coumermycin selectively changed the cleavage frequency at a few sites in the mutant strain DM800. These perturbations appear to alter the frequency of cleavage at a site but not the location of the site. The availability of many sites of differing strengths may be an important factor in the ability of gyrase to fine-tune the level of supercoiling or provide local swivels in bacterial DNA.  相似文献   

19.
Using isolated rat liver mitochondria, which have previously been shown to carry out true replicative DNA synthesis, we have obtained results which are in accord with the presence and functioning of a DNA gyrase in this organelle. The effects of the Escherichia coli DNA gyrase inhibitors, novobiocin, coumermycin, nalidixic acid and oxolinic acid, upon mtDNA replication suggest the involvement of the putative mitochondrial enzyme in various aspects of this process. First, the preferential inhibition of [3H]dATP incorporation into highly supercoiled DNA together with the appearance of labeled, relaxed DNA are consistent with the involvement of a gyrase in the process of generating negative supercoils in mature mtDNA. Second, the overall depression of incorporation of labeled dATP into mtDNA, including the reduction of radioactivity incorporated into replicative intermediates, suggests a 'swivelase' role for the putative gyrase, and this hypothesis is further supported by results obtained on sucrose gradient centrifugation of heat-denatured, D-loop mtDNA. Here, the synthesis of the completed clean circles is inhibited while 9 S initiator strand synthesis is not, suggesting that chain elongation is blocked by the gyrase inhibitors.  相似文献   

20.
In the maturation of the Escherichia coli antibiotic Microcin B17 (MccB17), the McbA prepro-antibiotic is modified post-translationally by the multimeric microcin synthetase complex (composed of the McbB, -C, and -D proteins), which cyclizes four cysteines and four serines to thiazoles and oxazoles, respectively. Herein, we report the purification of individual subunits of MccB17 synthetase as fusions to maltose binding protein (MBP), and the in vitro reconstitution of heterocyclization activity. Preliminary characterization of each subunit reveals McbB to be a zinc-containing protein that may catalyze the initial cyclodehydration step, and McbC to contain flavin, consistent with an anticipated role for a dehydrogenase. We have previously demonstrated that McbD is a regulated ATPase/GTPase that may function as a conformational switch. Photolabeling experiments with the McbA propeptide now identify McbD as the initial site of substrate recognition. Heterocyclization activity was reconstituted only by combining all three subunits, demonstrating that each protein is required for heterocycle formation. Titration assays indicate that the subunits bind to each other with at least micromolar affinities, although McbD affords activity only after the MBP tag is proteolytically removed. Subunit competition assays with an McbDD147A mutant, which yields a catalytically deficient synthetase in vivo, show it to be defective in complex formation, whereas the McbBC181A/C184A double mutant, which is also inactive, competitively inhibits reconstitution by native McbB. Addition of the HtpG chaperone (originally shown to copurify with MccB17 synthetase), does not stimulate synthetase reconstitution or heterocyclization activity in vitro. A model for synthetase activity is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号