首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tolerance to low temperature and paraquat-mediated oxidative stress was investigated in two Zea mays genotypes, VA36 and A619, grown at 25/22 C and 16/14 C for 50 d after germination. VA36, the tolerant genotype, showed an enhanced resistance to paraquat as compared to A619, the sensitive genotype, when grown at low temperature. In VA36, superoxide dismutase and ascorbate peroxidase activities increased during growth at both 25/22 °C or 16/14 °C. In A619, superoxide dismutase activity was similar in plants grown at both 16/14 °C or 25/22 °C. Ascorbate peroxidase activity was always significantly lower in plants grown at low temperature than in plants grown at 25/22 °C. The total ascorbate peroxidase activity was correlated with the cytosolic ascorbate peroxidase protein content in all but A619 plants grown at low temperature for 25 d. The isozyme pattern of SOD showed a higher abundance of MnSOD in VA36 than in A619 and of FeSOD in A619 compared to VA36. Growth at low temperature enhanced resistance to paraquat infiltration more in VA36 than in A619. SOD and APX activities were generally higher and more stable with the increase of paraquat concentration in VA36 than in A619. Damage indicated by Fv/Fm and ion leakage after paraquat infiltration were generally higher in plants grown at 25/22 °C than at 16/14 °C and higher in A619 than in VA36. However, no causal link is proved between the extent of damage and the increase of SOD and APX activities alone. It is suggested that tolerance to oxidative stress requires an integrated enhancement of the antioxidant system.  相似文献   

2.
The long-term effect of limiting soil nitrogen (N) availability on foliar antioxidants, thermal energy dissipation, photosynthetic and respiratory electron transport, and carbohydrates was investigated in Spinacia oleracea L. Starch, sucrose, and glucose accumulated in leaves of N-limited spinach at predawn, consistent with a downregulation of chloroplast processes by whole-plant sink limitation in response to a limited supply of N-based macromolecules throughout the plant. On a leaf-area or dry-weight basis, levels of chlorophyll, carotenoid pools, photosynthetic electron transport capacity, as well as activities for the predominantly chloroplast-localized antioxidant enzymes ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) were much lower in N-limited versus N-replete plants. When expressed on a chlorophyll basis, foliar levels of all of these parameters were similar in N-replete versus N-limited plants. However, on a total-protein basis, antioxidant enzyme activities were higher in N-limited plants. Nitrogen-limited spinach showed higher levels of thermal energy dissipation and of zeaxanthin and antheraxanthin at midday, as well as slightly higher ascorbate contents relative to chlorophyll. These results indicate that strong, long-term N limitation led not only to alterations in the balance between different processes but also to an overall downregulation of light collection, photosynthetic electron transport capacity, and chloroplast-based antioxidant enzymes. This is further supported by the finding that glucose-feeding of excised leaves led to strong concomitant decreases in photosynthetic electron transport capacity and ascorbate peroxidase activity. On a leaf-area basis, neither superoxide dismutase (EC 1.15.1.1) activity nor dark repiration rates showed a treatment effect. This indicates that overall mitochondrial electron transport activity does not decrease under long-term N limitation and is consistent with localization of an important fraction of foliar superoxide dismutase in mitochondria. Received: 19 March 1999 / Accepted: 13 April 1999  相似文献   

3.
Watermelon [Citrullus lanatus (Thunb.) Mansfeld] is a photophilic plant, whose net photosynthetic rate was significantly decreased when seedlings were grown under low light condition. However, treatment with 100 mg kg−1 5-aminolevulinic acid (ALA) could significantly restore the photosynthetic ability under the environmental stress. The parameters of leaf gas exchange, chlorophyll modulated fluorescence and fast induction fluorescence of the ALA-treated plants were higher than that of the control. Additionally, ALA treatment increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Nevertheless, the treatment of diethyldithiocarbamate (DDC), an inhibitor of SOD activity, dramatically depressed photosynthesis of watermelon leaves, while ALA could reverse the inhibition of DDC. Therefore, it can be deduced that ALA promotion on photosynthesis of watermelon leaves under low light stress is attributed to its promotion on antioxidant enzyme activities, and the increased activities of the enzymes, which are mainly located near the reaction centers of PSI, can scavenge superoxide anions, leading to an increase of apparent electron transport rate and an alleviation of photosynthetic photoinhibition under the stressed environment.  相似文献   

4.
Activities of Cu-containing proteins in Cu-depleted pea leaves   总被引:1,自引:0,他引:1  
The effect of Cu deficiency on Cu-containing enzymes and on their activities was studied with two subsequent generations of Cu-deficient pea plants ( Pisum sativum L., cv. Progress) grown in low Cu2+ media. Cu deficiency caused growth inhibition and a decrease in photosynthesis as well as in the activities of 3 Cu-containing enzymes: diamine oxidase (EC 1.4.3.6), ascorbate oxidase (EC 1.10.3.3) and superoxide dismutase (EC 1.15.1.1). Determinations of photosynthetic electron-transport rates as well as the concentrations of several redox components showed that the target of Cu deprivation in the photosynthetic apparatus is the synthesis of Cu-containing plastocyanin which is positively correlated to the Cu content of the leaves. Inhibited formation of plastocyanin resulted in low activities of photosynthetic electron transport in photosystem I. Under Cu-deficient conditions, the activities of diamine oxidase and ascorbate oxidase were inhibited by about 50% in the first and 80% in the second generation of pea plants. Enzyme assays showed an inhibition of the activities of both the plastidic and cytoplasmic Cu/Zn-containing superoxide dismutases. An observed simultaneous increase of Mn-superoxide dismutase may be a compensation mechanism to partially maintain the total superoxide-dismutase activity under Cu-deficient conditions. This result indicates that the formation of superoxide-dismutase isoenzymes is interdependent and coordinated.  相似文献   

5.
6.
TL Pons 《Photosynthesis research》2012,113(1-3):207-219
The effect of temperature and irradiance during growth on photosynthetic traits of two accessions of Arabidopsis thaliana was investigated. Plants were grown at 10 and 22?°C, and at 50 and 300?μmol photons?m(-2)?s(-1) in a factorial design. As known from other cold-tolerant herbaceous species, growth of Arabidopsis at low temperature resulted in increases in photosynthetic capacity per unit leaf area and chlorophyll. Growth at high irradiance had a similar effect. However, the growth temperature and irradiance showed interacting effects for several capacity-related variables. Temperature effects on the ratio between electron transport capacity and carboxylation capacity were also different in low compared to high irradiance grown Arabidopsis. The carboxylation capacity per unit Rubisco, a measure for the in vivo Rubisco activity, was low in low irradiance grown plants but there was no clear growth temperature effect. The limitation of photosynthesis by the utilization of triose-phosphate in high temperature grown plants was less when grown at low compared to high irradiance. Several of these traits contribute to reduced efficiency of the utilization of resources for photosynthesis of Arabidopsis at low irradiance. The two accessions from contrasting climates showed remarkably similar capabilities of developmental acclimation to the two environmental factors. Hence, no evidence was found for photosynthetic adaptation of the photosynthetic apparatus to specific climatic conditions.  相似文献   

7.
Effects of heat stress on the photosynthesis system and antioxidant activities in Fingered citron (Citrus medica var. sarcodactylis Swingle) were investigated. Two-year-old Fingered citron plants were exposed to different temperature (28, 35, 40, and 45°C) for 6 h; then the photosynthetic capacity, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in the leaves were evaluated. Exposure to 40 and 45°C for 6 h resulted in a significant decrease in the photosynthetic rate (P n), carboxylation efficiency (CE), the maximal photochemical efficiency of photosystem II, and the light-saturated photosynthetic rate, which were related to the reduction of CO2 assimilation, inactivation of photosystem II and photosynthetic electron transport. Moreover, transmission electron microscopy showed chloroplast ultrastructural alterations, including their swelling, matrix zone expanding, and lamella structure loosening. Furthermore, heat stress, especially at 45°C, caused oxidative damage resulted from ROS accumulation in Fingered citron leaves accompanied by increases in activities of superoxide dismutase, peroxidase, and catalase. However, exposure to 35°C for 6 h or 40°C for 4 h had no significant influence on the photosynthetic capacity at all. The results suggest that Fingered citron plants show no heat injury when temperature is below 40°C.  相似文献   

8.
Stimulation of photosynthesis in response to elevated carbon dioxide concentration [CO2] in the short-term (min) should be highly temperature dependent at high photon flux. However, it is unclear if long-term (days, weeks) adaptation to a given growth temperature alters the temperature-dependent stimulation of photosynthesis to [CO2]. In velveltleaf (Albutilon theophrasti), the response of photosynthesis, determined as CO2 assimilation, was measured over a range of internal CO2 concentrations at 7 short-term measurement (12, 16, 20, 24, 28, 32, 36 degrees C) temperatures for each of 4 long-term growth (16, 20, 28 and 32 degrees C) temperatures. In vivo estimates of VCmax, the maximum RuBP saturated rate of carboxylation, and Jmax, the light-saturated rate of potential electron transport, were determined from gas exchange measurements for each temperature combination. Overall, previous exposure to a given growth temperature adjusted the optimal temperatures of Jmax and VCmax with subsequently greater enhancement of photosynthesis at elevated [CO2] (i.e., a greater enhancement of photosynthesis at elevated [CO2] was observed at low measurement temperatures for A. theophrasti grown at low growth temperatures compared with higher growth temperatures, and vice versa for plants grown and measured at high temperatures). Previous biochemical based models used to predict the interaction between rising [CO2] and temperature on photosynthesis have generally assumed no growth temperature effect on carboxylation kinetics or no limitation by Jmax. In the current study, these models over predicted the temperature dependence of the photosynthetic response to elevated [CO2] at temperatures above 24 degrees C. If these models are modified to include long-term adjustments of Jmax and VCmax to growth temperature, then greater agreement between observed and predicted values was obtained.  相似文献   

9.
Restrictions to photosynthesis can limit plant growth at high temperature in a variety of ways. In addition to increasing photorespiration, moderately high temperatures (35–42 °C) can cause direct injury to the photosynthetic apparatus. Both carbon metabolism and thylakoid reactions have been suggested as the primary site of injury at these temperatures. In the present study this issue was addressed by first characterizing leaf temperature dynamics in Pima cotton (Gossypium barbadense) grown under irrigation in the US desert south‐west. It was found that cotton leaves repeatedly reached temperatures above 40 °C and could fluctuate as much as 8 or 10 °C in a matter of seconds. Laboratory studies revealed a maximum photosynthetic rate at 30–33 °C that declined by 22% at 45 °C. The majority of the inhibition persisted upon return to 30 °C. The mechanism of this limitation was assessed by measuring the response of photosynthesis to CO2 in the laboratory. The first time a cotton leaf (grown at 30 °C) was exposed to 45 °C, photosynthetic electron transport was stimulated (at high CO2) because of an increased flux through the photorespiratory pathway. However, upon cooling back to 30 °C, photosynthetic electron transport was inhibited and fell substantially below the level measured before the heat treatment. In the field, the response of assimilation (A) to various internal levels of CO2 (Ci) revealed that photosynthesis was limited by ribulose‐1,5‐bisphosphate (RuBP) regeneration at normal levels of CO2 (presumably because of limitations in thylakoid reactions needed to support RuBP regeneration). There was no evidence of a ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) limitation at air levels of CO2 and at no point on any of 30 ACi curves measured on leaves at temperatures from 28 to 39 °C was RuBP regeneration capacity measured to be in substantial excess of the capacity of Rubisco to use RuBP. It is therefore concluded that photosynthesis in field‐grown Pima cotton leaves is functionally limited by photosynthetic electron transport and RuBP regeneration capacity, not Rubisco activity.  相似文献   

10.
Frost tolerance has been reported in the shoots of wild, tuberiferous potato species such as Solanum commersonii when the plants are grown in either field or controlled conditions. However, these plants can survive as underground tubers and avoid unfavorable environmental conditions altogether. As such, leaf growth and photosynthesis at low temperature may not be required for survival of the plants. In order to determine the temperature sensitivity of S. commersonii shoots, we examined leaf growth, development and photosynthesis in plants raised at 20/16°C (day/night). 12/9°C and 5/2°C. S. commersonii leaves grown at 5°C exhibited a marked decrease in leaf area and in total chlorophyll (Chl) content per leaf area when compared with leaves grown at 20°C. Furthermore, leaves grown at 5°C did not exhibit the expected decrease in either water content or susceptibility to low-temperature-induced photoinhibition that normally characterizes cold acclimation in frost-tolerant plants. Measurements of CO2-saturated O2 evolution showed that the photosynthetic apparatus of 5°C plants was functional, even though the efficiency of photosystem II photochemistry was reduced by growth at 5°C. A decrease in the resolution of the M-peak in the slow transients for Chl a fluorescence in leaves grown at 12 and 5°C and in all leaves exposed to high light at 5°C indicated that low temperature significantly affected processes on the reducing side of QA, the primary quinone electron acceptor in photosystem II. Thus S. commarsonii exhibits the characteristics of a plant that is limited by chilling temperatures. Although S. commersonii can tolerate light frosts, its sensitivity to chilling temperatures may result in shoot dieback in winter in its native habitat. The plants may avoid both chilling and freezing temperatures by overwintering as underground tubers.  相似文献   

11.
Summary The growth of Spirulina platensis was studied in a light-limited culture under various dissolved oxygen (DO) concentrations. At high DO concentration, e.g. at 1.25 mM DO, the growth rate was decreased up to 36 % compared with that of 0.063 mM DO. The retarded growth rate at high DO concentrations seemed to be coupled with the degeneration of photosynthetic activity in terms of O2 evolution. Under higher DO concentrations, superoxide dismutase and ascorbate peroxidase activities tended to increase, while the contents of photosynthetic pigment, such phycocyanin, carotenoid and chlorophyll-a decreased distinctly.  相似文献   

12.
Transgenic cotton plants from several independently-transformed lines expressing a chimeric gene encoding a chloroplast-targeted Mn superoxide dismutase (SOD) from tobacco exhibit a three-fold increase in the total leaf SOD activity, strong Mn SOD activity associated with isolated chloroplasts, and a 30% and 20% increase in ascorbate peroxidase and glutathione reductase activities, respectively. The Mn SOD plants did exhibit a slightly enhanced protection against light-mediated, paraquat-induced cellular damage but only at 0.3 µM paraquat. In addition, photosynthetic rates at 10°C and 15°C were similar to those of controls, and the immediate recovery of photosynthesis after a 35-min exposure to 5°C and full sun was only slightly better than that for wild-type plants. The recovery for longer exposure times was comparable for both genotypes as was the deactivation of the H2O2-sensitive, Calvin-cycle enzyme, stromal fructose 1,6-bisphosphatase (FBPase). Compared to the controls, Mn SOD plant leaves in full sun prior to chilling stress had a lower activation of FBPase, a higher ratio of oxidized to reduced forms of ascorbate, and a higher total glutathione content. After 35 min at 5°C in full sunlight, total glutathione had risen in control leaves to 88% of the Mn SOD plant values, and oxidized to reduced ascorbate ratios were higher for both genotypes. However, an 80% increase in the ratio of oxidized to reduced glutathione occurred for Mn SOD plant leaves with no change for controls. This increased demand on the ascorbate-glutathione cycle is circumstantial evidence that high Mn SOD activity in the chloroplast leads to increased H2O2 pools that could, in some manner, affect photosynthetic recovery after a stress period. We postulate that the pool sizes of reduced ascorbate and glutathione may restrict the ability of the ascorbate-glutathione cycle to compensate for the increased activity of SOD in cotton over-producing mitochondrial Mn SOD in chloroplasts during short-term chilling/high light stress.  相似文献   

13.
Diurnal heliotropic leaf movements, photosynthetic gas exchange, and the ratio of variable fluorescence to maximum fluorescence (Fv/Fm) of unrestrained and horizontally restrained leaves from soybean (Glycine max cv. Cumberland) plants grown in two different water and two different nitrogen treatments were measured. Leaves of plants grown in low water or low nitrogen availability treatments displayed more pronounced diaheliotropism (solar tracking) in the afternoon and a longer period of paraheliotropism (light avoiding) at midday relative to those of well-watered, high-nitrogen-grown plants. Photosaturated photosynthetic rates and the photon flux required to saturate photosynthesis were reduced by water stress and nitrogen deficiency. Compared to horizontal leaves, irradiance on orienting leaves was nearer to the breakpoint of the photosynthetic light response curve, where photosynthesis is co-limited by ribulose biphosphate regeneration and carboxylation. This would increase the carbon return on investments of nitrogen into photosynthesis. A positive linear relationship between Fv/Fm and quantum yield of photosynthesis was measured. Leaves of low-nitrogen-grown plants had earlier and more prolonged reductions in Fv/Fm at midday compared to leaves of high nitrogen grown plants of the same water treatment. Within the same water and nitrogen treatment, horizontally restrained leaves had lower midday Fv/Fm in relation to orienting leaves. Nitrogen deficiency and water stress enhanced this difference such that horizontally restrained leaves of low water and low nitrogen grown plants had earlier and longer midday depressions in Fv/Fm.  相似文献   

14.
The influence of the arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on characteristics of growth, photosynthetic pigments, osmotic adjustment, membrane lipid peroxidation and activity of antioxidant enzymes in leaves of tomato (Lycopersicon esculentum cv Zhongzha105) plants was studied in pot culture under low temperature stress. The tomato plants were placed in a sand and soil mixture at 25°C for 6 weeks, and then subjected to 8°C for 1 week. AM symbiosis decreased malondialdehyde (MDA) content in leaves. The contents of photosynthetic pigments, sugars and soluble protein in leaves were higher, but leaf proline content was lower in mycorrhizal than non-mycorrhizal plants. AM colonization increased the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) in leaves. The results indicate that the AM fungus is capable of alleviating the damage caused by low temperature stress on tomato plants by reducing membrane lipid peroxidation and increasing the photosynthetic pigments, accumulation of osmotic adjustment compounds, and antioxidant enzyme activity. Consequently, arbuscular mycorrhiza formation highly enhanced the cold tolerance of tomato plant, which increased host biomass and promoted plant growth.  相似文献   

15.
Revegetation with metal tolerant plants for management of fly ash deposits is an important environmental perspective nowadays. Growth performance, photosynthesis, and antioxidant defense of lemongrass (Cymbopogon citratus (D.C.) Stapf.) were evaluated under various combination of fly ash amended with garden soil in order to assess its fly ash tolerance potential. Under low level of fly ash (25%) amended soil, the plant growth parameters such as shoot, root, and total plant biomass as well as metal tolerance index were increased compared to the control plants grown on garden soil, followed by decline under higher concentration of fly ash (50%, 75% and 100%). In addition, leaf photosynthetic rate, stomatal conductance, and photosystem (PS) II activity were not significantly changed under low level of fly ash (25%) amended soil compared to the garden soil but these parameters were significantly decreased further with increase of fly ash concentrations. Furthermore, increase of activities of some antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase over control were noticed in lemongrass under all fly ash treatments. Taken together, the study suggests that lemongrass can be used for phytoremediation of fly ash at 25% amended soil.  相似文献   

16.
The electron transport rates and coupling factor activity in the chloroplasts; adenylate contents, rates of photosynthesis and respiration in the leaves as well as activity of isolated mitochondria were investigated in Pisum sativum L. leaves of plants grown under low or high light intensity and exposed after detachment to 5 mM Pb(NO(3))(2). The presence of Pb(2+) reduced rate of photosynthesis in the leaves from plants grown under the high light (HL) and low light (LL) conditions, whereas the respiration was enhanced in the leaves from HL plants. Mitochondria from Pb(2+) treated HL-leaves oxidized glycine at a higher rate than those isolated from LL leaves. ATP content in the Pb-treated leaves increased to a greater extend in the HL than LL grown plants. Similarly ATP synthase activity increased markedly when chloroplasts isolated from control and Pb-treated leaves of HL and LL grown plants were subjected to high intensity light. The presence of Pb ions was found inhibit ATP synthase activity only in chloroplasts from LL grown plants or those illuminated with low intensity light. Low light intensity during growth also lowered PSI electron transport rates and the Pb(2+) induced changes in photochemical activity of this photosystem were visible only in the chloroplasts isolated from LL grown plants. The activity of PSII was influenced by Pb ions on similar manner in both light conditions. This study demonstrates that leaves from plants grown under HL conditions were more resistant to lead toxicity than those obtained from the LL grown plants. The data indicate that light conditions during growth might play a role in regulation of photosynthetic and respiratory energy conservation in heavy metal stressed plants by increasing the flexibility of the stoichiometry of ATP to ADP production.  相似文献   

17.
Cold acclimation and photoinhibition of photosynthesis in Scots pine   总被引:13,自引:0,他引:13  
Cold acclimation of Scots pine did not affect the susceptibility of photosynthesis to photoinhibition. Cold acclimation did however cause a suppression of the rate of CO2 uptake, and at given light and temperature conditions a larger fraction of the photosystem II reaction centres were closed in cold-acclimated than in nonacclimated pine. Therefore, when assayed at the level of photosystem II reaction centres, i.e. in relation to the degree of photosystem closure, cold acclimation caused a significant increase in resistance to photoinhibition; at given levels of photosystem II closure the resistance to photoinhibition was higher after cold acclimation. This was particularly evident in measurements at 20° C. The amounts and activities of the majority of analyzed active oxygen scavengers were higher after cold acclimation. We suggest that this increase in protective enzymes and compounds, particularly Superoxide dismutase, ascorbate peroxidase, glutathione reductase and ascorbate of the chloroplasts, enables Scots pine to avoid excessive photoinhibition of photosynthesis despite partial suppression of photosynthesis upon cold acclimation. An increased capacity for light-induced de-epoxidation of violaxanthin to zeaxanthin upon cold acclimation may also be of significance.Abbreviations APX ascorbate peroxidase - DHA dehydroascorbate - DHAR dehydroascorbate reductase - Fm maximal fluorescence when all reaction centres are closed - Fv/Fm maximum photochemical yield of PSII - GR glutathione reductase - GSH reduced glutathione - Je rate of photosynthetic electron transport - MDAR monodehydroascorbate reductase - qN nonphotochemical quenching of fluorescence - qP photochemical quenching of fluorescence - SOD superoxide dismutase This work was supported by the Swedish Natural Science Research Council and the National Natural Science Foundation of China.  相似文献   

18.
The mechanisms of photoprotection of photosynthesis and dissipation of excitation energy in rice leaves in response to potassium (K) deficiency were investigated. Net photosynthetic rate and the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase decreased under K deficiency. Compared with the control, non-photochemical quenching of Chl fluorescence increased in K-deficient plant, whereas the efficiency of excitation transfer (F'(v)/F'(m)) and the photochemical quenching coefficient (q(P)) decreased. Thus, thermal dissipation of excitation energy increased as more excess electrons were accumulated in the photosynthetic chain. The electron transport rate through PSII (J(f)) was more sensitive to O2 concentration, and the fraction of electron transport rate required to sustain CO2 assimilation and photorespiration (J(g)/J(f)) was significantly decreased under K deficiency compared with the control. Furthermore, the alternative electron transport (J(a)/J(f)) was increased, indicating that a considerable amount of electrons had been transported to O2 during the water-water cycle in the K-deficient leaves. Although the fraction of electron transport to photorespiration (J(o)/J(f)) was also increased in the K-deficient leaves, it was less sensitive than that of the water-water cycle. With the generation of reactive oxygen species level, the activities of superoxide dismutase and ascorbate peroxidase, two of the key enzymes involved in scavenging of active oxygen species in the water-water cycle, also increased in K-deficient rice. Therefore, it is likely that a series of photoprotective mechanisms were initiated in rice plants in response to K deficiency and the water-water cycle might be critical for protecting photosynthetic apparatus under K deficiency in rice.  相似文献   

19.
The photosynthesis of ryegrass leaves grown in a simulated sward   总被引:2,自引:0,他引:2  
Plants were taken from simulated swards of perennial ryegrass (Lolium perenne) grown in a controlled environment and the rates of photosynthesis of the youngest fully expanded leaves, and the second and third youngest leaves on the same tillers were measured. The youngest leaves had the highest rates and the third the lowest, with the second leaves intermediate. The rate of photosynthesis in bright light of successive youngest expanded leaves decreased as the swards increased in leaf area, but did not when plants were grown so that the main stem was not shaded. When plants were grown at different densities and the photosynthetic rates of leaves of a particular ontogenetic rank were measured, it was found that leaves on plants from higher densities had lower rates of photosynthesis. Also leaves on plants grown in bright light had higher photosynthetic rates than those on plants grown in dim light. It is concluded that the decline in the photosynthetic capacity of successive leaves in a rapidly growing simulated sward is due to the intense shading to which they are subjected during their expansion.  相似文献   

20.
There are large inter- and intraspecific differences in the temperature dependence of photosynthesis, but the physiological cause of the variation is poorly understood. Here, the temperature dependence of photosynthesis was examined in three ecotypes of Plantago asiatica transplanted from different latitudes, where the mean annual temperature varies between 7.5 and 16.8 degrees C. Plants were raised at 15 or 30 degrees C, and the CO(2) response of photosynthetic rates was determined at various temperatures. When plants were grown at 30 degrees C, no difference was found in the temperature dependence of photosynthesis among ecotypes. When plants were grown at 15 degrees C, ecotypes from a higher latitude maintained a relatively higher photosynthetic rate at low measurement temperatures. This difference was caused by a difference in the balance between the capacities of two processes, ribulose-1,5-bisphosphate regeneration (J(max)) and carboxylation (V(cmax)), which altered the limiting step of photosynthesis at low temperatures. The organization of photosynthetic proteins also varied among ecotypes. The ecotype from the highest latitude increased the J(max) : V(cmax) ratio with decreasing growth temperature, while that from the lowest latitude did not. It is concluded that nitrogen partitioning in the photosynthetic apparatus and its response to growth temperature were different among ecotypes, which caused an intraspecific variation in temperature dependence of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号