首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Folding kinetics for phage 434 Cro protein are examined and compared with those reported for lambda(6-85), the N-terminal domain of the repressor of phage lambda. The two proteins have similar all-helical structures consisting of five helices but different stabilities. In contrast to lambda(6-85), sharp and distinct aromatic (1)H NMR signals without exchange broadening characterize the native and urea-denatured 434 Cro forms at equilibrium at 20 degrees C, indicating slow interconversion on the NMR time scale. Stopped-flow fluorescence data using the single 434 Cro tryptophan indicate strongly urea-dependent refolding rates and smaller urea dependencies of the unfolding rates, suggesting a native-like transition state ensemble. Refolding rates are slower and unfolding rates considerably faster at pH 4 than at pH 6. This accounts for the lower stability of 434 Cro at pH 4 and suggests the existence of pH-dependent, possibly salt bridge interactions that are more stabilizing at pH 6. At <2 M urea, decreased folding amplitudes and nonlinear urea dependencies that are apparent at pH 6 indicate deviation from two-state behavior and suggest the formation of an early folding intermediate. The folding behavior of 434 Cro and why it folds 2 orders of magnitude slower than lambda(6-85) are rationalized in terms of the lower intrinsic helix stabilities and putative charge interactions in 434 Cro.  相似文献   

2.
Structure of phage 434 Cro protein at 2.35 A resolution   总被引:9,自引:0,他引:9  
The crystal structure of phage 434 Cro protein has been determined and refined against 2.35 A data to an R-factor of 19.5%. The protein comprises five alpha-helices and shows the helix-turn-helix motif found in other repressor proteins.  相似文献   

3.
A comparative model building process has been utilized to predict the three-dimensional structure of the bacteriophage 434 Cro protein. Amino acid sequence similarities between the 434 Cro protein and other bacteriophage repressor and Cro proteins have been used, in conjunction with secondary structure prediction and the known structures of other base sequence specific DNA binding proteins, to derive the model. From this model the interactions between the 434 Cro protein and its operator DNA have been deduced. These proposed interactions are consistent with the known properties of the bacteriophage 434 Cro protein.  相似文献   

4.
The phage 434 Cro/OR1 complex at 2.5 A resolution   总被引:9,自引:0,他引:9  
The crystal structure of phage 434 Cro protein in complex with a 20 base-pair DNA fragment has been determined to 2.5 A resolution. The DNA fragment contains the sequence of the OR1 operator site. The structure shows a bent conformation for the DNA, straighter at the center and more bent at the ends. The central base-pairs adopt conformations with significant deviations from coplanarity. The two molecules interact extensively along their common interface, both through hydrogen bonds and van der Waals interactions. The significance of these interactions for operator binding and recognition is discussed.  相似文献   

5.
Two DNA binding proteins, Cro and the amino-terminal domain of the repressor of bacteriophage 434 (434 Cro and 434 repressor) that regulate gene expression and contain a helix-turn-helix (HTH) motif responsible for their site-specific DNA recognition adopt very similar three-dimensional structures when compared to each other. To reveal structural differences between these two similar proteins, their dynamic structures, as examined by normal mode analysis, are compared in this paper. Two kinds of structural data, one for the monomer and the other for a complex with DNA, for each protein, are used in the analyses. From a comparison between the monomers it is found that the interactions of Ala-24 in 434 Cro or Val-24 in 434 repressor, both located in the HTH motif, with residues 44, 47, 48, and 51 located in the domain facing the motif, and the interactions between residues 17, 18, 28, and 32, located in the HTH motif, cause significant differences in the correlative motions of these residues. From the comparison between the monomer and the complex with DNA for each protein, it was found that the first helix in the HTH motif is distorted in the complex form. While the residues in the HTH motif in 434 Cro have relatively larger positive correlation coefficients of motions with other residues within the HTH motif, such correlations are not large in the HTH motif of 434 repressor. It is suggestive to their specificity because the 434 repressor is less specific than 434 Cro. Although a structural comparison of proteins has been performed mainly from a static or geometrical point of view, this study demonstrates that the comparison from a dynamic point of view, using the normal mode analysis, is useful and convenient to explore a difference that is difficult to find only from a geometrical point of view, especially for proteins very similar in structure. © 1996 Wiley-Liss, Inc.  相似文献   

6.
The conformational stability of Shiga toxin B-subunit (STxB), a pentameric protein from Shigella dysenteriae has been characterized by high sensitivity differential scanning calorimetry and circular dichroism spectroscopy under different solvent conditions. It is shown that the thermal folding/unfolding of STxB is a reversible process involving a highly cooperative transition between folded pentamer and unfolded monomers. The conformational stability of STxB is pH dependent and because of its pentameric nature is also concentration dependent. STxB is maximally stable in the pH range from 5 to 9 (Delta G upon unfolding is close to 13 kcal per mol of monomer at 25 degrees C), and its stability decreases both at lower and at higher pH values. The pH dependence of the Gibbs energy of stabilization between pH 2.5 and 5 is consistent with the change in the ionizable state of an average of four groups per monomer upon unfolding. Structural thermodynamic calculations show that the stabilization of the STxB pentamer is primarily due to the interactions established between monomers rather than intramonomer interactions. The folding of an isolated monomer into the conformation existing in the pentamer is unfavorable and expected to be characterized by a free-energy change upon folding in the order of 2.5 kcal mol(-1) at 25 degrees C. On the average, intersubunit interaction induced upon oligomerization of folded monomers should contribute close to -13.4 kcal per mol of monomer to bring the overall Gibbs energy to the experimentally determined value at this temperature.  相似文献   

7.
Abstract

A comparative model building process has been utilized to predict (he three-dimensional structure of the bacteriophage 434 Cro protein, Amino acid sequence similarities between the 434 Cro protein and other bacteriophage repressor and Cro proteins have been used, in conjunction with secondary structure prediction and the known structures of other base sequence specific DNA binding proteins, to derive the model. From this model the interactions between the 434 Cro protein and its operator DNA have been deduced. These proposed interactions are consistent with the known properties of the bacteriophage 434 Cro protein.  相似文献   

8.
Genetic and structural analysis of the protein stability problem   总被引:24,自引:0,他引:24  
B W Matthews 《Biochemistry》1987,26(22):6885-6888
  相似文献   

9.
A A Pakula  R T Sauer 《Proteins》1989,5(3):202-210
A mutant Cro protein, which bears the Ile-30----Leu substitution, is thermally unstable and degraded more rapidly than wild-type Cro in vivo. Using an antibody screen, we have isolated five different second site suppressor substitutions that reduce the proteolytic hypersensitivity of this mutant Cro protein. Two of the suppressor substitutions increase the thermal stability of Cro by 12 degrees C to 14 degrees C. These amino acid substitutions affect residues 16 and 26, which are substantially exposed to solvent in the crystal structure of wild-type Cro.  相似文献   

10.
11.
Operators and promoters in the OR region of phage 434.   总被引:5,自引:5,他引:5       下载免费PDF全文
  相似文献   

12.
Digestion of phage lambda imm434 DNA with restriction endonuclease EcoRI yields 7 fragments. The shortest among them (1287 bp) contains the right part of the phage 434 immunity region and the phage DNA portion proximal to it. The complete primary structure of this fragment has been determined using the chemical method of DNA sequencing. Hypothetical amino-acid sequences of proteins coded by the cro gene of phage 434 and the cII gene of phage lambda, as well as NH2-terminal amino-acid sequences of the cI protein of phage 434 and the O protein of phage lambda, have been deduced solely on the basis of the DNA sequence. The fragment studied contains also the pR and probably prm promoters and the oR operator of phage 434. The sequence coding for them differs from the respective DNA sequence of phage lambda.  相似文献   

13.
The kinetics of the lambda-phage major structural protein syntheses was determined during the lytic development by radioimmunoassay. For this purpose, the individual structural proteins such as pE, pV and pD were isolated in polyacrylamide gel by the preparative SDS-electrophoresis. The proper monospecific antisera were obtained. All the proteins were labelled with 125J in vitro by a chloramine method. The degree of nativity for iodinated proteins was determined by the electrophoretic and immunochemical methods. The concentrations of proteins pE, pV and pD were measured in lysates of E. coli W3350 cells infected with the phage lambda C1857 at various time intervals after infection using a competitive radioimmunoassay. The concentrations of all three proteins turned out to increase sharply between 20 and 40 minutes after infection, then the rate of synthesis of structual proteins declined gradually. On a cell basis the accumulation of major proteins of the head such as pE and pD exceeded by a factor of 10 or 20 the amount required for collection of the infected progeny or pahge; at the same time the primary component of the tail pV accumulated to a lesser extent. The autonomic regulation of the syntheses of major phage proteins is assumed to be exercised as a translation level in the lytic development of the phage lambda.  相似文献   

14.
Selection for improved protein stability by phage display.   总被引:3,自引:0,他引:3  
A library of mutants of a single-chain Fv fragment (scFv) was generated by a combination of directed and random mutagenesis, using oligonucleotides randomized at defined positions and two rounds of DNA shuffling. The library was based on the already well folding and stable scFv fragment 4D5Flu. In order to further improve this framework and test the efficiency of various selection strategies, phage display selection was carried out under different selective pressures for higher thermodynamic stability. Incubation of the display phages at elevated temperatures was compared to exposure of the phages to high concentrations of guanidinium chloride. Temperature stress-guided selection yielded the most stable scFv mutant after two rounds of mutagenesis and selection, due to the irreversibility of the unfolding process. It possessed only two mutations (His(L27d)Asn and Phe(L55)Val) and showed a thermodynamic stability improved by roughly 4 kcal/mol, threefold better expression yields in Escherichia coli as well as a 20-fold better binding constant than the 4D5Flu wild-type. The selection results obtained in this study delineate the advantages, disadvantages and limitations of different stability stress selection methods in phage display.  相似文献   

15.
16.
It was previously shown that the Cro repressor from phage lambda, which is a dimer, can be converted into a stable monomer by a five-amino acid insertion. Phe58 is the key residue involved in this transition, switching from interactions which stabilize the dimer to those which stabilize the monomer. Structural studies, however, suggested that Phe58 did not penetrate into the core of the monomer as well as it did into the native dimer. This was strongly supported by the finding that certain core-repacking mutations, including in particular, Phe58-->Trp, increased the stability of the monomer. Unexpectedly, the same substitution also increased the stability of the native dimer. At the same time it decreased the affinity of the dimer for operator DNA. Here we describe the crystal structures of the Cro F58W mutant, both as the monomer and as the dimer. The F58W monomer crystallized in a form different from that of the original monomer. In contrast to that structure, which resembled the DNA-bound form of Cro, the F58W monomer is closer in structure to wild-type (i.e. non-bound) Cro. The F58W dimer also crystallizes in a form different from the native dimer but has a remarkably similar overall structure which tends to confirm the large changes in conformation of Cro on binding DNA. Introduction of Trp58 perturbs the position occupied by the side-chain of Arg38, a DNA-contact residue, providing a structural explanation for the reduction in DNA-binding affinity.The improved thermal stability is seen to be due to the enhanced solvent transfer free energy of Trp58 relative to Phe58, supplemented in the dimer structure, although not the monomer, by a reduction in volume of internal cavities.  相似文献   

17.
A tof-like protein that has 434-specific DNA binding activity has been copurified with the 434 tof protein from lambda imm434cI dv carrier cells. The apparent molecular weight of the new 434-specific DNA binding protein is 9,000 to 9,500, a little higher than that of the 434 tof protein, as estimated by SDS gel electrophoresis. Amino acid analysis revealed the protein to be an arginine-rich component whereas the 434 tof protein is a lysine-rich component. The specific binding reaction of the new protein to lambda imm434dv DNA is distinct from that of the 434 tof protein in respect to the sigmoid shape of the binding curve and to the temperature dependency. This suggests that the specific binding to lambda imm434dv DNA observed with the new protein is due not to a trace of the 434 tof protein contaminating the new protein preparation but rather to the new protein itself. The NH2-terminal 11 residues of the new 434-specific DNA binding protein were sequenced by manual Edman degradation. This technique revealed that the new protein is not a fragment of the 434 tof, cII, or O protein or an NH2-terminal fragment of the cI repressor. The origin and the physiological roles of the new 434-specific DNA binding protein remain unknown.  相似文献   

18.
19.
Biopharmaceutical and biotechnology companies and regulatory agencies require novel methods to determine the structural stabilities of proteins and the integrity of protein-protein, protein-ligand, and protein-membrane interactions that can be applied to a variety of sample states and environments. Infrared spectroscopy is a favorable method for a number of reasons: it is adequately sensitive to minimal sample amounts and is not limited by the molecular weight of the sample; yields spectra that are simple to evaluate; does not require protein modifications, a special supporting matrix, or internal standard; and is applicable to soluble and membrane proteins. In this paper, we investigate the application of infrared spectroscopy to the quantification of protein structural stability by measuring the extent of amide hydrogen/deuterium exchange in buffers containing D2O for proteins in solution and interacting with ligands and lipid membranes. We report the thermodynamic stability of several protein preparations, including chick egg-white lysozyme, trypsin bound by benzamidine inhibitors, and cytochrome c interacting with lipid membranes of varying net-negative surface charge density. The results demonstrate that infrared spectroscopy can be used to compare protein stability as determined by amide hydrogen/deuterium exchange for a variety of cases.  相似文献   

20.
The structural stability of the protein, phycocyanin isolated from two strains of cyanophyta, Synechococcus lividus (thermophile) and Phormidium luridum (mesophile), are investigated by comparative thermal and denaturant unfolding, using differential scanning calorimetry, visible absorption spectrophotometry, and circular dichroism. The thermophilic protein exhibits a much higher temperature and enthalpy of unfolding from the native to the denatured state. The concentration of urea at half-completion of thermal unfolding is essentially the same between the thermophilic and mesophilic proteins; in contrast, the corresponding temperature and the enthalpy of thermal unfolding are much higher for the thermophilic protein. In addition, the concentration of urea at which the non-thermal (denaturant) unfolding of protein is half-completed, as detected by either circular dichroism or absorption spectroscopy, is significantly higher in the thermophilic protein, while the apparent free energy of unfolding only shows a moderate difference between the two proteins. The distinct differences in the enthalpy of thermal unfolding and the free energy of denaturant unfolding are interpreted in terms of a significant entropy change associated with the unfolding of these proteins. This entropy contribution is much higher in the thermophilic protein, and may be derived from its more rigid overall structure that possesses higher internal hydrophobicity and stronger internal packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号