首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel feeding strategy in fedbatch recombinant yeast fermentation was developed to achieve high plasmid stability and protein productivity for fermentation using low-cost rich (non-selective) media. In batch fermentations with a recombinant yeast, Saccharomyces cerevisiae, which carried the plasmid pSXR125 for the production of beta-galactosidase, it was found that the fraction of plasmid-carrying cells decreased during the exponential growth phase but increased during the stationary phase. This fraction increase in the stationary phase was attributed to the death rate difference between the plasmid-free and plasmid-carrying cells caused by glucose starvation in the stationary phase. Plasmid-free cells grew faster than plasmid-carrying cells when there were plenty of growth substrate, but they also lysed or died faster upon the depletion of the growth substrate. Thus, pulse additions of the growth substrate (glucose) at appropriate time intervals allowing for significant starvation period between two consecutive feedings during fedbatch fermentation should have positive effects on stabilizing plasmid and enhancing protein production. A selective medium was used to grow cells in the initial batch fermentation, which was then followed with pulse feeding of concentrated non-selective media in fedbatch fermentation. Both experimental data and model simulation show that the periodic glucose starvation feeding strategy can maintain a stable plasmid-carrying cell fraction and a stable specific productivity of the recombinant protein, even with a non-selective medium feed for a long operation period. On the contrary, without glucose starvation, the fraction of plasmid-carrying cells and the specific productivity continue to drop during the fedbatch fermentation, which would greatly reduce the product yield and limit the duration that the fermentation can be effectively operated. The new feeding strategy would allow the economic use of a rich, non-selective medium in high cell density recombinant fedbatch fermentation. This new feeding strategy can be easily implemented with a simple IBM-PC based control system, which monitors either glucose or cell concentration in the fermentation broth.  相似文献   

2.
Continuous production of a recombinant murine granulocyte-macrophage colony-stimulating factor (MuGM-CSF) by immobilized yeast cells, Saccharomyces cerevisiae strain XV2181 (a/a, Trp1) containing plasmid palphaADH2, in a fluidized bed bioreactor was studied at a 0.03 h(-1) dilution rate and various particle loading rates ranging from 5% to 33% (v/v). Cells were immobilized on porous glass beads fluidized in an air-lift draft tube bioreactor. A selective medium containing glucose was used to start up the reactor. After reaching a stable cell concentration, the reactor feed was switched to a rich, nonselective medium containing ethanol as the carbon source for GM-CSF production. GM-CSF production increased initially and then dropped gradually to a stable level. During the same period, the fraction of plasmid-carrying cells declined continuously to a lower level, depending on the particle loading. The relatively stable GM-CSF production, despite the large decline in the fraction of plasmid-carrying cells, was attributed to cell immobilization. As the particle loading rate increased, the plasmid stability also increased. Also, as the particle loading increased from 5% to 33%, total cell density in the bioreactor increased from 16 to 36 g/L, and reactor volumetric productivity increased from 0.36 to 1.31 mg/L.h. However, the specific productivity of plasmid-carrying cells decreased from 0.55 to 0.07 mg/L.g cell. The decreased specific productivity at higher particle loading rates was attributed to reduced growth efficiency caused by nutrient limitations at higher cell densities. Both the reactor productivity and specific cell productivity increased by two- to threefold or higher when the dilution rate was increased from 0.03 to 0.07 h(-1). (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
The recombinant Saccharomyces cerevisiae strain C468/pGAC9 has an unstable hybrid plasmid pGAC9, which directs production of glucoamylase. A fibrous cotton material with a good adsorption capability for recombinant S. cerevisiae cells was used as the immobilization matrix in an internal loop airlift-driven fibrous bed bioreactor (ILALFBB) system. With batch cultures in the ILALFBB, the fraction of plasmid-carrying cells was 72% after more than 2 days cultivation, which was two times higher than that in the conventional free-cell culture. Correspondingly, a high activity of glucoamylase (GA; 113 U/l) was achieved with a high productivity of 43 U/l/h. The ILALFBB system also maintained a high fraction of viable plasmid-carrying of 74% for glucoamylase production during repeated-batch cultures, achieving a high glucoamylase activity of 140 U/l with a productivity of 19–130 U/l/h in all 14 batches studied during 19.8 days. The stable and long-term glucoamylase production from the ILALFBB was attributed to the effect of cell immobilization on plasmid stability. Plasmid-carrying cells were preferentially retained in the fibrous matrix because of their ability to adhere to the fiber surface and to form cell aggregates higher than those of plasmid-free cells. The repeated batch using immobilized cell of recombinant S. cerevisiae in the ALALFBB system thus provides a feasible method for stable, long-term and high-level production of glucoamylase.  相似文献   

4.
Construction of a starch-utilizing yeast by cell surface engineering.   总被引:10,自引:2,他引:10       下载免费PDF全文
We have engineered the cell surface of the yeast Saccharomyces cerevisiae by anchoring active glucoamylase protein on the cell wall, and we have endowed the yeast cells with the ability to utilize starch directly as the sole carbon source. The gene encoding Rhizopus oryzae glucoamylase with its secretion signal peptide was fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast alpha-agglutinin, a protein involved in mating and covalently anchored to the cell wall. The constructed plasmid containing this fusion gene was introduced into S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The glucoamylase activity as not detected in the culture medium, but it was detected in the cell pellet fraction. The glucoamylase protein transferred to the soluble fraction from the cell wall fraction after glucanase treatment but not after sodium dodecyl sulfate treatment, indicating the covalent binding of the fusion protein to the cell wall. Display of the fused protein was further confirmed by immunofluorescence microscopy and immunoelectron microscopy. The transformant cells could surely grow on starch as the sole carbon source. These results showed that the glucoamylase was anchored on the cell wall and displayed as its active form. This is the first example of an application of cell surface engineering to utilize and improve the metabolic ability of cells.  相似文献   

5.
An industrial spectrophotometer was used as a very accurate on-line biomass sensor to investigate fast dynamic changes in yeast culture in the range of 0.5–5 g/l. High sensitive variation in biomass concentration of 0.015 g/l was detected. A fast dynamic response is induced in a steady state continuous culture of Saccharomyces cerevisiae by an acetate pulse and biomass concentration profile clearly determined by this sensor.  相似文献   

6.
A novel yeast cell-based strategy for the immobilization of antibodies using an amine-terminated self-assembly film has been proposed. A quartz crystal microbalance sensor was according fabricated by coupling with anti-prostate specific antigen (anti-PSA) for PSA immunoassay. The crystal was modified with cysteamine to deposit yeast cells, on which anti-PSA antibodies were immobilized. The surface topologies of the as-prepared crystals were characterized by use of scanning electron microscopy. In contrast to the traditional glutaraldehyde (GLU) approach, the yeast cells could allow antibody molecules bound with higher bioactivity and achieve better immunoreaction capability. Results indicate that immunoassay prepared using the developed yeast cell-binding procedure exhibits increased analytical performance compared with that produced using the GLU cross-linking procedure. A PSA serum concentration in the range of 5.0-604.0ngml(-1) can be determined by this new system.  相似文献   

7.
VirB5 is a minor component of the extracellular T pilus determined by the Agrobacterium tumefaciens type IV secretion system. To identify proteins that interact with VirB5 during the pilus assembly process, we purified VirB5 as a recombinant fusion protein and, by using a gel overlay assay, we detected a 26-kDa interacting protein in Agrobacterium cell lysates. The VirB5-binding protein was purified from A. tumefaciens and identified as the cytokinin biosynthetic enzyme Tzs. The VirB5-Tzs interaction was confirmed using pulldown assays with purified proteins and the yeast two-hybrid system. An analysis of the subcellular localization in A. tumefaciens showed that Tzs was present in the soluble as well as the membrane fraction. Tzs was extracted from the membranes with the mild detergent dodecyl-beta-D-maltoside in complexes of different molecular masses, and this association was strongly reduced in the absence of VirB5. Using immunoelectron microscopy, we also detected Tzs on the Agrobacterium cell surface. A functional type IV secretion system was required for efficient translocation to the surface, but Tzs was not secreted into the cell supernatant. The fact that Tzs localizes on the cell surface suggests that it may contribute to the interaction of Agrobacterium with plants.  相似文献   

8.
1. A non-dialyzable fraction from fresh bakers' yeast stimulates the formation of S. muscae virus in cells in synthetic medium in the log phase of multiplication. 2. A similar fraction was not found in calf thymus, pancreas, or liver. 3. The active substance in this fraction has been partially purified. 4. This substance is taken up by the cells. In the absence of virus the added substance is metabolized to a form no longer available for virus formation. 5. A purified yeast fraction, which stimulates adaptive enzyme formation in yeast, has been found to stimulate virus formation in the S. muscae system. 6. The similarities between the yeast fraction that stimulates adaptive enzyme formation and the yeast fraction that stimulates virus formation are discussed.  相似文献   

9.
The intracellular Src homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP-1) is a negative regulator of cell signaling and contributes to the establishment of TCR signaling thresholds in both developing and mature T lymphocytes. Although there is much functional data implicating SHP-1 as a regulator of TCR signaling, the molecular basis for SHP-1 activation in T lymphocytes is poorly defined. A modification of the yeast two-hybrid system was employed to identify in T cells phosphotyrosine-containing proteins capable of binding the SH2 domains of SHP-1. From this yeast tri-hybrid screen, the p85beta subunit of phosphatidylinositol 3-kinase and the immunoreceptor tyrosine-based inhibitory motif-containing receptors, leukocyte-associated Ig-like receptor-1 (LAIR-1) and programmed death-1 (PD-1), were identified. Coimmunoprecipitation studies demonstrated that the exclusive phosphotyrosine-containing protein associated with SHP-1 in Jurkat T cells under physiological conditions is LAIR-1. Significantly, this interaction is constitutive and was detected only in the membrane-enriched fraction of cell lysates. Ligand engagement of the SH2 domains of SHP-1 is a prerequisite to activation of the enzyme, and, consistent with an association with LAIR-1, SHP-1 was found to be constitutively active in unstimulated Jurkat T cells. Importantly, a constitutive interaction between LAIR-1 and SHP-1 was also detected in human primary T cells. These results illustrate the sustained recruitment and activation of SHP-1 at the plasma membrane of resting human T cells by an inhibitory receptor. We propose that this mechanism may exert a constitutive negative regulatory role upon T cell signaling.  相似文献   

10.
The content of inorganic linear polyphosphate (polyP) and the polymeric degree (n) of these compounds were determined in the process of growth of the yeast Saccharomyces cerevisiae VKM Y-1173 in a medium, which contained varying Pi amount with the constant level of all the necessary components. For this purpose, a combination of chemical methods of polyP extraction and 31P-NMR spectroscopy studies of their chain length were used. After 7 h of phosphate starvation, the yeast was shown to use almost completely the phosphate reserve in the form of polyP localized in various cell compartments to support their vitality. The polyP drop was followed by a considerable shortening of the polymer chain length of acid-soluble (polyP1) and two alkali-soluble (polyP3 and polyP4) fractions. Under the same conditions, the content of a salt-soluble fraction (polyP2) decreased almost 20-fold followed by a simultaneous increase of the chain length nearly 2-fold. As a result, fraction chain length ranged up to n = 40-45. Replacement of the yeast cells after phosphate starvation to a complete phosphate- and glucose-containing medium resulted in super-accumulation ("overcompensation") of polyP within 2 h mainly in polyP3 and, to a lesser degree, in polyP1, polyP2, and polyP5 fractions. In polyP4 fraction localized as polyP3 at the cell surface, the polyP super-accumulation was not detected. The increase of polyP amount in the fractions mentioned turned out not to be accompanied by simultaneous elongation of their chain length and occurred at the lowest level that is characteristic of a polymer level for each fraction. Further cultivation of the yeast on the complete medium during 2 h had little or no effect on polyP content in the cells but led to elongation of polyP chain length especially in the polyP3 and polyP4 fractions. A phenomenon of considerable elongation of polyP chain length against the background of their fixed content revealed in the yeast growing on the complete medium suggests that these organisms possess a previously unknown discrete way of polyP biosynthesis, which results first in the formation of comparatively low-molecular-mass chains followed by that of high-molecular-mass polymers.  相似文献   

11.
A metabolic sensor governing cell size in bacteria   总被引:7,自引:0,他引:7  
Weart RB  Lee AH  Chien AC  Haeusser DP  Hill NS  Levin PA 《Cell》2007,130(2):335-347
Nutrient availability is one of the strongest determinants of cell size. When grown in rich media, single-celled organisms such as yeast and bacteria can be up to twice the size of their slow-growing counterparts. The ability to modulate size in a nutrient-dependent manner requires cells to: (1) detect when they have reached the appropriate mass for a given growth rate and (2) transmit this information to the division apparatus. We report the identification of a metabolic sensor that couples nutritional availability to division in Bacillus subtilis. A key component of this sensor is an effector, UgtP, which localizes to the division site in a nutrient-dependent manner and inhibits assembly of the tubulin-like cell division protein FtsZ. This sensor serves to maintain a constant ratio of FtsZ rings to cell length regardless of growth rate and ensures that cells reach the appropriate mass and complete chromosome segregation prior to cytokinesis.  相似文献   

12.
Aims: The aim of the work is to exploit the yeast pheromone system for controlled cell–cell communication and as an amplification circuit in technical applications, e.g. biosensors or sensor‐actor systems. Methods and Results: As a proof of principle, we developed recombinant Saccharomyces cerevisiae cells that express enhanced green fluorescent protein (EGFP) in response to different concentrations of the alpha (α)‐factor mating pheromone. A respective reporter construct allowing the pheromone‐driven expression of EGFP was transformed into the S. cerevisiae strains BY4741 and BY4741 bar1Δ. Upon addition of synthetic α‐factor, the fluorescence strongly increases after 4 h. Furthermore, cells with constitutive α‐factor expression were able to induce the expression of EGFP in co‐cultivation with sensor cells only if both cell types were deleted for the gene BAR1, encoding α‐factor protease. For technical applications, the immobilization of functionalized cells may be beneficial. We show that pheromone‐induced expression of EGFP is effective in alginate‐immobilized cells. Conclusions: Based on S. cerevisiaeα‐factor, we developed a controlled cell–cell communication system and amplification circuit for pheromone‐driven expression of a target protein. The system is effective both in suspension and after cell immobilization. Significance and Impact of the Study: The developed set of recombinant yeast strains is the basis to apply the yeast pheromone system for signal production and amplification in biosensors or sensor‐actor systems.  相似文献   

13.
Data and a semi-empirical model are presented that describe the affinity interaction of yeast cells with a Concanavalin A derivatised surface. The model uses 3 parameters to describe the time course of cell attachment from a flowing suspension of yeast cells, over a range of flow rates, and gives an effective global fit to the data obtained. Further modifications allow the effects of a soluble competitor (glucose) on binding to be quantified in terms of a saturation effect, and an effective global fit is obtained. A comparison was made between the relationship between steady-state attached fraction and applied shear with similar data reported earlier (Ming, F. et al, 1998) for the detachment of pre-adsorbed cells. This shows that there is an order of magnitude difference between the forces required to effect complete detachment in the two systems, and that the nature of the relationship between shear and attached fraction is profoundly different. The magnitude of this time-dependent stabilization might be explained in terms of a progressive reorientation of cell relative to the surface such that the number of bonds is maximized.  相似文献   

14.
A wireless sensing device was developed for the in-situ monitoring of the growth of human breast cancer cells (MCF-7) and evaluation of the cytotoxicity of the anticancer drugs fluorouracil and cisplatin. The sensor is fabricated by coating a magnetoelastic ribbon-like sensor with a layer of polyurethane that protects the iron-rich sensor from oxidation and provides a cell-compatible surface. In response to a time-varying magnetic field, the magnetoelastic sensor longitudinally vibrates, emitting magnetic flux that can be remotely detected by a pick-up coil. No physical connections between the sensor and the detection system are required. The wireless property facilitates aseptic biological operation, especially in cell culture as illustrated in this work. The adhesion of cells on the sensor surface results in a decrease in the resonance amplitude, which is proportional to the cell concentration. A linear response was obtained in cell concentrations of 5x10(4) to 1x10(6)cellsml(-1), with a detection limit of 1.2x10(4)cellsml(-1). The adhesion strength of cells on the sensor is qualitatively evaluated by increasing the amplitude of the magnetic excitation field. And the cytotoxicity of the anticancer drugs fluorouracil and cisplatin is evaluated by the magnetoelastic biosensor. The cytostatic curve is related with the quantity of cytostatic drug. The lethal concentration (LC50) for cells incubated in the presence of drugs for 20h is calculated to be 19.9muM for fluorouracil and 13.1muM for cisplatin.  相似文献   

15.
The structure of membranes of Salmonella derby cells both containing R-plasmid and free of plasmid was studied by small- and large-angle X-ray diffraction. Reflections with interplane distances of 8 and 11 A were detected, which are typical of plasmid-carrying S. derby cells. These reflections are assumed to be due to equidistant well ordered positions of the polar groups of phosphatidylcholine and phosphatidylethanolamine molecules on membrane surface. It is also suggested that the formation of these structures is determined by peculiar hydrophilic-hydrophobic interactions of the phospholipid in membranes.  相似文献   

16.
17.
Ascorbic acid (Asc), arachidonic acid (AA) and prostaglandin E2 (PGE2) are reported to be important in maintaining the stability of the cell matrix. Asc has also been shown to influence fatty acid (FA) and PGE2 synthesis, with the result that effects of Asc on cell growth are suggested to be mediated through the metabolism of these two compounds. This study examined the effect of Asc, supplemented over the concentration range of 0-100 micrograms/ml, on the in vitro cell growth of non-malignant LLCMK (monkey kidney) cells and malignant B16 murine melanoma cells. The effects of Asc supplementation on AA and PGE2 levels in the cell stroma and membrane fractions of the two cell types was also determined. Asc had no significant inhibitory or stimulatory effect on the growth of either the B16 or LLCMK cells. The total percentage AA composition determined in the B16 control cells (combined stroma and membrane fractions), was similar to that determined in the LLCMK control cells. Asc supplementation of the B16 cells, resulted in an inverse relationship between B16 cell growth and total percentage AA composition. PGE2 concentration in the control B16 cells (combined stroma and membrane fractions) was significantly higher than that detected in the control LLCMK cells. No PGE2 was detected in the B16 stroma fraction, with all appearing to be located in the membrane fraction. However, upon the supplementation of the B16 cells with increasing Asc concentrations, PGE2 appeared to be mobilized from the membrane fraction, resulting in increasing PGE2 levels in the stroma fraction relative to the membrane fraction. This was accompanied by a significant decrease in PGE2 concentration, in the membrane fraction. B16 cell growth and total (stroma and membrane fractions) PGE2 concentration in these cells was inversely related, when cultures were supplemented with increasing levels of Asc. Asc supplementation of the LLCMK cells did not appear to have any significant effect on AA or PGE2 metabolism in these cells.  相似文献   

18.
For direct and efficient ethanol production from cellulosic materials, we constructed a novel cellulose-degrading yeast strain by genetically codisplaying two cellulolytic enzymes on the cell surface of Saccharomyces cerevisiae. By using a cell surface engineering system based on alpha-agglutinin, endoglucanase II (EGII) from the filamentous fungus Trichoderma reesei QM9414 was displayed on the cell surface as a fusion protein containing an RGSHis6 (Arg-Gly-Ser-His(6)) peptide tag in the N-terminal region. EGII activity was detected in the cell pellet fraction but not in the culture supernatant. Localization of the RGSHis6-EGII-alpha-agglutinin fusion protein on the cell surface was confirmed by immunofluorescence microscopy. The yeast strain displaying EGII showed significantly elevated hydrolytic activity toward barley beta-glucan, a linear polysaccharide composed of an average of 1,200 glucose residues. In a further step, EGII and beta-glucosidase 1 from Aspergillus aculeatus No. F-50 were codisplayed on the cell surface. The resulting yeast cells could grow in synthetic medium containing beta-glucan as the sole carbon source and could directly ferment 45 g of beta-glucan per liter to produce 16.5 g of ethanol per liter within about 50 h. The yield in terms of grams of ethanol produced per gram of carbohydrate utilized was 0.48 g/g, which corresponds to 93.3% of the theoretical yield. This result indicates that efficient simultaneous saccharification and fermentation of cellulose to ethanol are carried out by a recombinant yeast cells displaying cellulolytic enzymes.  相似文献   

19.
A major problem in the use of plasmids as recombinant vectors is the problem of plasmid-free cell generation from plasmid shedding and subsequent growth. A common technique for controlling the population of plasmidfree cells is the use of selective media against these cells using an auxotrophic host and a plasmid that has the ability to produced the essential metabolite. A distributed model describing the growth of Saccharomyces cerevisiae containing a recombinant plasmid in selective media was developed. The model allows for growth and production of a metabolite by the plasmid-carrying strain and growth of the plasmid-free cells on resulting metabolite concentrations. Through a determination of system constants and numerical solution to the equations, experimental batch and continuous culture results for cell concentration transients could be simulated by the model. The results indicated that despite selective pressure, plasmid-free cell growth was significant.  相似文献   

20.
A CAN1/can1Δ heterozygous allele that determines loss of heterozygosity (LOH) was used to study recombination in Saccharomyces cerevisiae cells exposed to ultraviolet (UV) light at different points in the cell cycle. With this allele, recombination events can be detected as canavanine-resistant mutations after exposure of cells to UV radiation, since a significant fraction of LOH events appear to arise from recombination between homologous chromosomes. The radiation caused a higher level of LOH in cells that were in the S phase of the cell cycle relative to either cells at other points in the cell cycle or unsynchronized cells. In contrast, the inactivation of nucleotide excision repair abolished the cell cycle-specific induction by UV of LOH. We hypothesize that DNA lesions, if not repaired, were converted into double-strand breaks during stalled replication and these breaks could be repaired through recombination using a non-sister chromatid and probably also the sister chromatid. We argue that LOH may be an outcome used by yeast cells to recover from stalled replication at a lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号