首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report on experiments pertaining to solution properties of the (S)-hydroxynitrile lyase from Hevea brasiliensis (HbHNL). Small angle X-ray scattering unequivocally established the enzyme to occur in solution as a dimer, presumably of the same structure as in the crystal. The acid induced, irreversible deactivation of HbHNL was examined by electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD) and by measuring the enzyme activity. The deactivation is paralleled by an unfolding of the enzyme. ESI-MS of this 30000 Da per monomer heavy protein demonstrated that unfolding took place in several stages which are paralleled by a decrease in enzyme activity. Unfolding can also be observed by CD spectroscopy, and there is a clear correlation between enzyme activity and unfolding as detected by ESI-MS and CD.  相似文献   

3.
Electrospray ionization (ESI) mass spectra of both well-characterized and novel metallothioneins (MTs) from various species were recorded to explore their metal-ion-binding modes and stoichiometries. The ESI mass spectra of the zinc- and cadmium-binding MTs showed a single main peak corresponding to metal-to-protein ratios of 4, 6, or 7. These findings combined with data obtained by other methods suggest that these MTs bind zinc or cadmium in a single predominant form and are consistent with the presence of three- and four-metal clusters. An unstable copper-specific MT isoform from Roman snails (Helix pomatia) could be isolated intact and was shown to preferentially bind 12 copper ions. To obtain additional information on the formation and relative stability of metal-thiolate clusters in MTs, a mass spectrometric titration study was conducted. One to seven molar equivalents of zinc or of cadmium were added to metal-free human MT-2 at neutral pH, and the resulting complexes were measured by ESI mass spectrometry. These experiments revealed that the formation of the four-metal cluster and of the thermodynamically less stable three-metal cluster is sequential and largely cooperative for both zinc and cadmium. Minor intermediate forms between metal-free MT, Me4MT, and fully reconstituted Me7MT were also observed. The addition of increasing amounts of cadmium to metal-free blue crab MT-I resulted in prominent peaks whose masses were consistent with apoMT, Cd3MT, and Cd6MT, reflecting the known structure of this MT with two Me3Cys9 centers. In a similar reconstitution experiment performed with Caenorhabditis elegans MT-II, a series of signals corresponding to apoMT and Cd3MT to Cd6MT species were observed.  相似文献   

4.
Electrospray ionization mass spectrometry was used to examine both the covalent structure and solution conformation of the soybean lipoxygenases. The post-translational modifications of two lipoxgyenases were identified as N-terminal acetylations by tandem mass spectrometry of peptides generated by trypsin digestion. The N-terminal sequence suggests that the proteins were substrates for the plant homolog of the N-terminal acetyltransferase complex C in yeast. Analysis of samples of native lipoxygenase-3 produced ions corresponding within experimental error to the mass of the N-acetylated polypeptide and one iron atom. The precision of the measurements was within roughly 100 ppm for the 96,856 Da protein. This made it possible to detect the addition of a single oxygen atom to the enzyme in a chemical modification reaction with cumene hydroperoxide. The acid-induced denaturation of lipoxygenase-3, which was accompanied by nearly complete loss of catalytic activity, was observed below pH 3.5 with the appearance of ions in the mass spectrum derived from the apoprotein. There was no evidence for the loss of iron in the absence of unfolding. Solutions of lipoxygenase-3 incubated in 0.1M acetic acid produced ions with a novel charge state distribution suggesting a unique conformation. Circular dichroism measurements showed that the secondary structure features of the native protein were retained in the new conformation. Dynamic light scattering revealed that the new conformation was not a consequence of protein aggregation as the hydrodynamic radius of lipoxygenase-3 was significantly smaller in acetic acid solution than at pH 7.0. Remarkably, the enzyme incubated in acetic acid retained full catalytic activity.  相似文献   

5.
Cysteine and cystine in protein are modified to various derivatives in vitro and in vivo. By electrospray ionization mass spectrometry (ESI-MS), we previously found derivatives of serum transthyretin (TTR) in which cysteine residue at position 10 was changed to glycine residue and sulfocysteine residue. The change, cysteine to glycine, was unique and the origin of the sulfonic acid group was controversial. In the present paper, we show the molecular masses of various TTR derivatives including these two, and the modification process was studied using a synthetic peptide with the same sequence as cysteine containing part of TTR, i.e., SKCPLMVK. After incubation of the peptide at pH 8.3, various derivatives were generated, which showed changes of cysteine residue to glycine, dehydroalanine, S-thiocysteine, and S-sulfocysteine residues, which were confirmed by molecular mass and collision-induced dissociation spectra. Dehydroalanine may react with other amino acids and contribute to form cross-linking fibril, causing amyloidosis.  相似文献   

6.
We developed and characterized 6 new cysteine mass tags for high-sensitivity peptide analysis. The structural features are: (1) iodoacetyl group for thiol tagging, (2) hydrophilic character for reducing sample loss, (3) tertiary amino, quaternary ammonium, or guanidino group for high proton affinity, and (4) no amide bonding for minimizing fragmentation of tag moiety in collision-induced dissociation. By using these tags, 2- to 200-fold MS sensitivity was achieved, compared to control peptide with carbamydomethylation.  相似文献   

7.
An electrospray ionization (ESI) compatible separation of phospholipids (PL), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC), was performed on a C18 column by reversed phase High Performance Liquid Chromatography (HPLC) with minimal ESI suppression. The mobile phase, used isocratically, consisted of methanol and water. ESI was used to efficiently transfer the ions present in solution to the gas phase for mass spectrometric (MS) detection. Formation of negative ions was reinforced by incorporating piperidine post column. Limits of detection (LOD) and limits of quantitation (LOQ) were experimentally determined to be 20 and 60 fmol/microl, respectively, when acquiring data in the selected ion monitoring (SIM) mode monitoring three ions with a single quadrupole MS. When acquiring data from m/z 110-900 in the scanning mode, the LOD and LOQ were experimentally determined to be 1 pmol/microl and 3 pmol/microl. When acquiring product ion spectra for m/z 747, the LOD and LOQ were experimentally determined to be 446 attomol/microl and 1.3 fmol/microl, respectively.  相似文献   

8.
A set of 10 different recombinant human parvalbumins was used to establish a method for the investigation of the Ca2+-binding properties of proteins by electrospray ionization mass spectrometry (ESI-MS). Human PVWT was found to bind 2 mol Ca2+ ions/mol of protein, whereas its mutants (PVE101V, PVD90A, PVE62V, PVD51A, PVD90A,E101V, PVE62V,E101V, PVD51A,D90A, PVD51A,E62V, PVD51A,E62V, D90A,E101V) containing inactivating substitutions in the Ca2+-binding loops bind 0 or 1 Ca2+ ion per protein molecule, depending on the degree of inactivation. These findings fully agree with previously reported results obtained by flow dialysis experiments. The RP-HPLC desalted metal-free proteins were analyzed in 10 mM ammonium acetate at pH 7.0. The experimental conditions were optimized with the recombinant parvalbumin test system before analyzing the Ca2+-binding properties of rat and murine parvalbumins in muscle tissue extracts. ESI-MS revealed that (i) rat and murine alpha-parvalbumins each bind specifically two Ca2+ ions per protein molecule and (ii) both extracted parvalbumins were found to be posttranslationally modified; each protein is acetylated at the N-terminus. Finally, during our investigations of the murine parvalbumin a sequencing error was detected at the C-terminus where the amino acid at position 109 is Ser and not Thr as mentioned in the SwissProt data base (Accession No. P32848). This work demonstrates the great potential of the ESI-MS technique as a sensitive, specific, and rapid method for direct identification and determination of the stoichiometry of Ca2+-binding proteins and other metalloproteins.  相似文献   

9.
Oxidation of thiol proteins, which results in conversion of cysteine residues to cysteine sulfenic, sulfinic or sulfonic acids, is an important posttranslational control of protein function in cells. To facilitate the analysis of this process with MALDI‐MS, we have developed a method for selective enrichment and identification of peptides containing cysteine sulfonic acid (sulfopeptides) in tryptic digests of proteins based on ionic affinity capture using polyarginine‐coated nanodiamonds as high‐affinity probes. The method was applied to selectively concentrate sulfopeptides from either a highly dilute solution or a complex peptide mixture in which the abundance of the sulfonated analyte is as low as 0.02%. The polyarginine‐coated probes exhibit a higher affinity for peptides containing multiple sulfonic acids than peptides containing single sulfonic acid. The limit of the detection is in the femtomole range, with the MALDI‐TOF mass spectrometer operating in the negative ion mode. The results show that the new approach has good specificity even in the presence of phosphopeptides. An application of this method for selective enrichment and structural identification of sulfopeptides is demonstrated with the tryptic digests of performic‐acid‐oxidized BSA.  相似文献   

10.
Glycerophosphocholines (GPCho's) are known to cause liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) matrix ionization effects during the analysis of biological samples (i.e. blood, plasma). We have developed a convenient new method, which we refer to as "in-source multiple reaction monitoring" (IS-MRM), for detecting GPCho's during LC-MS/MS method development. The approach uses high energy in-source collisionally induced dissociation (CID) to yield trimethylammonium-ethyl phosphate ions (m/z 184), which are formed from mono- and disubstituted GPCho's. The resulting ion is selected by the first quadrupole (Q1), passed through the collision cell (Q2) in the presence of collision gas at low energy to minimize fragmentation, and m/z 184 selected by the third quadrupole. This approach can be combined with standard multiple reaction monitoring (MRM) transitions with little compromise in sensitivity during method development and sample analysis. Hence, this approach was used to probe ionization matrix effects in plasma samples. The resulting information was employed to develop LC-MS/MS analyses for drugs and their metabolites with cycle times less than 5 min.  相似文献   

11.
Lysophospholipids (lyso-PLs), including various glycerol-based and sphingosine-based lysophospholipids, play important roles in many biochemical, physiological, and pathological processes. The classical methods to analyze these lipids involve gas chromatography and/or high-performance liquid chromatography, which are time-consuming, cumbersome, and sometimes inaccurate due to the incomplete separation of closely related lipid species. We now describe the quantitative analysis of lyso-PLs in ascites samples from patients with ovarian cancer using electrospray ionization spectrometry. Three new classes of lyso-PL molecules are detected: alkyl-LPA, alkenyl-LPA, and methylated lysophosphatidylethanolamine. Importantly, the following lysophospholipid species are significantly increased in ascites from patients with ovarian cancer, compared to patients with nonmalignant diseases (e.g., liver failure): LPA (including acyl-, alkyl-, and alkenyl-LPA species), lysophosphatidylinositol, and sphingosylphosphorylcholine. Lysophosphorylcholine contents are also significantly different among ascitic fluids from the two groups of patients. However, the total phosphate content in ascites samples from patients with ovarian cancer is not significantly different compared to that from patients with nonmalignant disease.  相似文献   

12.
A general scheme for the purification of baculovirus-expressed cytochrome P450s (P450s) from the crude insect cell pastes has been designed which renders the P450s suitable for analysis by high-performance liquid chromatography (HPLC) electrospray ionization mass spectrometry (ESI-MS). An HPLC/ESI-MS procedure has been developed to analyze small amounts of intact purified P450 (P450s cam-HT, 1A1, 1A2, 2A6, 2B1, 2C9, 2C9 C175R, 3A4, 3A4-HT) and rat NADPH cytochrome P450 reductase (P450 reductase). The experimentally determined and predicted (based on the amino acid sequences) molecular masses (MMs) of the various proteins had identical rank orders. For each individual protein, the difference between the experimentally determined (+/-SD, based on experiments performed on at least 3 different days) and predicted MMs ranged from 0.002 to 0.035%. Each experimentally determined MM had a standard deviation of less than 0.09% (based on the charge state distribution). Application of this HPLC/ESI-MS technique made the detection of the covalent modification to P450 2C9 following mechanism-based inactivation by tienilic acid possible. In the absence of glutathione, three P450 2C9 species were detected that produced ESI mass spectra corresponding to native P450 2C9 and both a monoadduct and a diadduct of tienilic acid to P450 2C9. In the presence of glutathione, only native P450 2C9 and the monoadduct were detected. Based on the observed mass shifts for the P450 2C9/tienilic acid adducts, a mechanism for the inactivation of P450 2C9 by tienilic acid is proposed.  相似文献   

13.
Purification and analysis of very small quantities of arachidonic acid lipoxygenase products from biological samples remains a challenging task. Gas chromatography-mass spectrometry is an ideally suited technique unsurpassed in the analytical figures of merit of sensitivity, specificity, and accuracy for the quantitation of such hydroxy lipids as 5-hydroxyeicosatetraenoic acid and the LTB4 isomers. We have developed procedures to incorporate oxygen-18 into the carboxyl moiety of these fatty acids as well as 12-hydroxyl position of LTB4 and report on the suitability of these isotopimers as internal standards for quantitative mass spectrometry. Furthermore, the enhanced sensitivity of negative ion chemical ionization of the pentafluorobenzyl ester, trimethylsilyl ether derivatives has been examined. The most abundant ion obtained by this technique is the carboxylate anion which retains all oxygen atoms of these eicosanoids. Comparison of the positive electron impact and negative ion CI mass spectrometric behavior is presented.  相似文献   

14.
The sulfonation reagent, a succinimidyl ester of 3-sulfobenzoic acid, has been synthesized for effective peptide sequencing. It is capable of incorporating an additional mobile proton into the peptide backbone, thus, facilitating efficient collision-induced dissociation. This reagent is easily and inexpensively prepared in short time. Tandem mass spectra of the guanidinated and reagent-sulfonated peptides consist mainly of the y-ion series with higher intensities than those observed for solely guanidinated peptides. These enhanced tandem MS attributes significantly improved MASCOT total-ion scores, thus, allowing more confident peptide sequencing. This derivatization was also very effective for the analysis of tryptic digest of human blood serum proteins separated by two-dimensional gel electrophoresis. When used in LC-MALDI/MS/MS format, this type of derivatization does not adversely affect chromatographic efficiencies.  相似文献   

15.
5-Hydroxyeicosatetraenoic acid (5-HETE) and leukotriene B4 have recently been shown to possess potent chemotactic and chemokinetic properties. Because of the very low concentrations found in certain biological systems, negative-ion chemical ionization mass spectrometry has been investigated as a potential assay method for detecting these compounds. A facile derivatization to form the pentafluorobenzyl esters, and clean up are reported for these compounds at the 15-ng level. Gas chromatographic properties, negative-ion chemical ionization mass spectra, and positive-ion electron impact spectra are reported for the pentafluorobenzyl ester, trimethylsilyl ether derivatives of 5-HETE and leukotriene B4 isomers.  相似文献   

16.
S acylation of cysteines located in the transmembrane and/or cytoplasmic region of influenza virus hemagglutinins (HA) contributes to the membrane fusion and assembly of virions. Our results from using mass spectrometry (MS) show that influenza B virus HA possessing two cytoplasmic cysteines contains palmitate, whereas HA-esterase-fusion glycoprotein of influenza C virus having one transmembrane cysteine is stearoylated. HAs of influenza A virus having one transmembrane and two cytoplasmic cysteines contain both palmitate and stearate. MS analysis of recombinant viruses with deletions of individual cysteines, as well as tandem-MS sequencing, revealed the surprising result that stearate is exclusively attached to the cysteine positioned in the transmembrane region of HA.  相似文献   

17.
Mass spectra of the derivatives of indol-3yl-acetic acid and cis-abscisic acid were obtained in electron impact and chemical ionization positive ion and negative ion modes. The respective merits of methane, isobutane, and ammonia as reagent gases for structure determination and sensitive detection were compared using the methyl esters. From one to 10 fluorine atoms were attached to IAA to improve the electron-capturing properties of the molecule. The best qualitative information was obtained when using positive ion chemical ionization with methane. However, the most sensitive detection, with at least two ions per molecule, was achieved by electron impact on the IAA-HFB-ME derivative and by negative ion chemical ionization with NH3 on the ABA-methyl ester derivative. p ]Quantitative analyses of ABA in different parts of maize (Zea mays cv. LG 11) root tips were performed by the latter technique. It was found that the cap and apex contained less ABA than the physiologically older parts of the root such as the elongation zone and the more differentiated tissues. This technique was also used to show a relation between maize root growth and the endogenous ABA level of the elongation zone and root tip: there is more ABA in the slowly growing roots than in the rapidly growing ones.  相似文献   

18.
Insulin secretion by pancreatic islet beta-cells is impaired in diabetes mellitus, and normal beta-cells are enriched in phospholipids with arachidonate as sn-2 substituent. Such molecules may play structural roles in exocytotic membrane fusion or serve as substrates for phospholipases activated by insulin secretagogues. INS-1 insulinoma cells respond to secretagogues and permit the study of effects of culture with free fatty acids on phospholipid composition and secretion. INS-1 cell glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) lipids are demonstrated here by electrospray ionization mass spectrometry to contain a lower fraction of molecules with arachidonate and a higher fraction with oleate as sn-2 substituent than native islets. Palmitic acid supplementation induces little change in these INS-1 cell lipids, but supplementation with linoleate or arachidonate induces a large rise in the fraction of INS-1 cell GPC species with polyunsaturated sn-2 substituents and a fall in oleate-containing species to yield a GPC profile similar to native islets. The fraction of GPE lipids comprised of plasmenylethanolamine species with polyunsaturated sn-2 substituents in early-passage INS-1 cells is similar to that of islets, but declines on serial passage. Such molecules might participate in exocytotic membrane fusion, and late-passage INS-1 cells have reduced insulin secretory responses. Arachidonate supplementation induces a rise in the fraction of INS-1 cell GPE lipids with polyunsaturated sn-2 substituents and partially restores responses to insulin secretagogues by late-passage INS-1 cells, but does not further amplify secretion by early-passage cells. Effects of extracellular free fatty acids on beta-cell phospholipid composition and secretory responses could be involved in changes in beta-cell function during the period of hyper-free fatty acidemia that precedes diabetes mellitus.  相似文献   

19.
Isotope tags for relative and absolute quantification (iTRAQ) reagent coupled with matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometric analysis has been evaluated as both a qualitative and quantitative method for the detection of modifications to active pharmaceutical ingredients derived from recombinant DNA technologies and as a method to detect counterfeit drug products. Five types of insulin (human, bovine, porcine, Lispro, and Lantus) were used as model products in the study because of their minor variations in amino acid sequence. Several experiments were conducted in which each insulin variant was separately digested with Glu-C, and the digestate was labeled with one of four different iTRAQ reagents. All digestates were then combined for desalting and MALDI-TOF/TOF mass spectrometric analysis. When the digestion procedure was optimized, the insulin sequence coverage was 100%. Five different types of insulin were readily differentiated, including human insulin (P28K29) and Lispro insulin (K28P29), which differ only by the interchange of two contiguous residues. Moreover, quantitative analyses show that the results obtained from the iTRAQ method agree well with those determined by other conventional methods. Collectively, the iTRAQ method can be used as a qualitative and quantitative technique for the detection of protein modification and counterfeiting.  相似文献   

20.
A gas chromatography/mass spectrometry assay is described to quantify the endogenous neurotoxin quinolinic acid (QUIN) in brain, whole blood, and plasma. High specificity and high sensitivity were obtained by using negative chemical ionization and accuracy was achieved by using [18O]QUIN as internal standard. Neutralized perchloric acid extracts were washed with chloroform, applied to Dowex 1 x 8 (formate form), and eluted with 6 M formic acid. After lyophilization, QUIN and [18O]QUIN were esterified with hexafluoroisopropanol (to mass 467 and 471, respectively) using trifluoroacetylimidazole as catalyst. The esters were extracted into heptane and injected onto a gas chromatograph, DB-5 capillary column. QUIN and [18O]QUIN were quantified by selected ion monitoring of QUIN-specific anion currents from the molecular anions (m/z 467 and 471, respectively) and a specific anion fragment (m/z 316 from QUIN and m/z 320 from [18O]QUIN). Minimum sensitivity was 3 fmol, intraassay variability was 3.2%, and interassay variability was 8.1% QUIN concentrations in frontal cortex from over 200 rats ranged from 20 to 180 fmol/mg wet wt. Two hours after systemic L-tryptophan (L-Trp; 0.370 mmol/kg) administration, QUIN increased in whole blood 134.8-fold and in plasma, 74.3-fold. In frontal cortex, increases in QUIN (22.6-fold, corrected for QUIN in blood) exceeded increases in cortical L-Trp (2.54-fold), 5-HT (1.35-fold), and 5-HIAA (1.74-fold). These studies demonstrate that QUIN is present in brain and is sensitive to the availability of systemic L-Trp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号