首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The topographical relationship of the chorda tympani nerve (chorda tympani) to the tensor tympani muscle in the middle ear of carnivores provides new phylogenetic information. The examination of histological serial sections of 16 carnivore species representing most families revealed two distinct character states concerning the course of the chorda tympani: a hypotensoric state with the nerve running below the insertion tendon of the tensor tympani muscle, and an epitensoric state with the nerve running above the tendon. The shift from the plesiomorphic hypotensoric chorda tympani to the apomorphic epitensoric condition occurred once in carnivore phylogeny: Only in the herpestid species under study does the chorda tympani cross above the tensor tympani muscle. Therefore, we introduce the epitensoric pattern as a new synapomorphy for herpestids. Within the herpestids we find the following structural distinctions: Herpestes javanicus and Galerella sanguinea have a chorda tympani running in a sulcus directly above the insertion of the tensor tympani muscle, whereas in the eusocial herpestid species Suricata suricatta and Mungos mungo the chorda tympani lies far above the insertion of the muscle. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
The middle ear structures of eight species of mole in the family Talpidae (Mammalia: Eulipotyphla) were studied under light and electron microscopy. Neurotrichus, Parascalops, and Condylura have a simple middle ear cavity with a loose ectotympanic bone, ossicles of a "microtype" morphology, and they retain a small tensor tympani muscle. These characteristics are ancestral for talpid moles. Talpa, Scalopus, Scapanus, and Parascaptor species, on the other hand, have a looser articulation between malleus and ectotympanic bone and a reduced or absent orbicular apophysis. These species lack a tensor tympani muscle, possess complete bullae, and extensions of the middle ear cavity pneumatize the surrounding basicranial bones. The two middle ear cavities communicate in Talpa, Scapanus, and Parascaptor species. Parascaptor has a hypertrophied malleus, a feature shared with Scaptochirus but not found in any other talpid genus. Differences in middle ear morphology within members of the Talpidae are correlated with lifestyle. The species with middle ears closer to the ancestral type spend more time above ground, where they will be exposed to high-frequency sound: their middle ears appear suited for transmission of high frequencies. The species with derived middle ear morphologies are more exclusively subterranean. Some of the derived features of their middle ears potentially improve low-frequency hearing, while others may reduce the transmission of bone-conducted noise. By contrast, the unusual middle ear apparatus of Parascaptor, which exhibits striking similarities to that of golden moles, probably augments seismic sensitivity by inertial bone conduction.  相似文献   

3.
Many living species of golden moles (Chrysochloridae) have greatly enlarged middle ear ossicles, believed to be used in the detection of ground vibrations through inertial bone conduction. Other unusual features of chrysochlorids include internally coupled middle ear cavities and the loss of the tensor tympani muscle. Our understanding of the evolutionary history of these characteristics has been limited by the paucity of fossil evidence. In this article, we describe for the first time the exquisitely preserved middle and inner ears of Namachloris arenatans from the Palaeogene of Namibia, visualised using computed tomography, as well as ossicles attributed to this species. We compare the auditory region of this fossil golden mole, which evidently did not possess a hypertrophied malleus, to those of three extant species with similarly sized ear ossicles, Amblysomus hottentotus, Calcochloris obtusirostris, and Huetia leucorhinus. The auditory region of Namachloris shares many common features with the living species, including a pneumatized, trabeculated basicranium and lateral skull wall, arteries and nerves of the middle ear contained in bony tubes, a highly coiled cochlea, a secondary crus commune, and no identifiable canaliculus cochleae for the perilymphatic duct. However, Namachloris differs from extant golden moles in the apparent absence of a basicranial intercommunication between the right and left ears, the possession of a tensor tympani muscle and aspects of ossicular morphology. One Namachloris skull showed what may be pneumatization of some of the dorsal cranial bones, extending right around the brain. Although the ossicles are small in absolute terms, one of the Huetia leucorhinus specimens had a more prominent malleus head than the other. This potentially represents a previously unrecognised subspecific difference.  相似文献   

4.
It is accepted in the literature that the levator veli palatini muscle of artiodactyls originates at the ectotympanic bone, a statement based on macroscopic dissection of adult specimens. The study of 34 histological serial sections of fetal heads of 23 species of artiodactyls revealed that this generalization must be modified: in the studied Camelidae, Suidae, Hippopotamidae, Giraffidae, and in some Bovidae (namely Tragelaphus and Antidorcas) the primary attachment of this functionally important muscle is at the tendinous intersection with the tensor veli palatini. Primary ontogenetic attachments are considered as relevant for defining homologies. By outgroup comparison (Felis and Diceros), this structural connection (character state 1) is also found in the Scrotifera—and hence may be considered as plesiomorphic for the Artiodactyla and its subunits. Only in the Tragulidae, Cervidae, Moschidae, and some Bovidae is a secondary attachment at the ectotympanic observed, which is interpreted as apomorphic for these taxa; possibly this character state 2 developed homoplastically several times. Bovidae show a mixed distribution of this character: Tragelaphus, Aepyceros, and Antidorcas show only a connection of the levator with the tensor veli; in Neotragus, Raphicerus, and Sylvicapra there exists an additional insertion at the ectotympanic; only Bos, Cephalophus, Damaliscus, and Ovis have a primary origin at the ectotympanic. It can be demonstrated in late fetal Sus that a secondary insertion of the levator veli at the ectotympanic is established during ontogeny; in a late fetal Ovis a secondary contact with the tensor veli is realized. The interpretation of this character distribution depends not only on an intrinsic polarity (‘Lesrichtung’), but also on the assumed character state of the groundplan of the common ancestor of the Bovidae. The anatomical observations are documented by photographs of relevant histological sections. The character states are mapped on a simplified and synoptic cladogram of extant artiodactyls; their pattern of evolutionary transformation as well as their relevance for the phylogenetic systematics of this mammalian order are discussed.  相似文献   

5.
This study is based on the examination of histological sections of specimens of different ages and of adult ossicles from macerated skulls representing a wide range of taxa and aims at addressing several issues concerning the evolution of the ear ossicles in marsupials. Three-dimensional reconstructions of the ear ossicles based on histological series were done for one or more stages of Monodelphis domestica, Caluromys philander, Sminthopsis virginiae, Trichosurus vulpecula, and Macropus rufogriseus. Several common trends were found. Portions of the ossicles that are phylogenetically older develop earlier than portions representing more recent evolutionary inventions (manubrium of the malleus, crus longum of the incus). The onset of endochondral ossification in the taxa in which this was examined followed the sequence; first malleus, then incus, and finally stapes. In M. domestica and C. philander at birth the yet precartilaginous ossicles form a supportive strut between the lower jaw and the braincase. The cartilage of Paauw develops relatively late in comparison with the ear ossicles and in close association to the tendon of the stapedial muscle. A feeble artery traverses the stapedial foramen of the stapes in the youngest stages of M. domestica, C. philander, and Sminthopsis virginiae examined. Presence of a large stapedial foramen is reconstructed in the groundplan of the Didelphidae and of Marsupialia. The stapedial foramen is absent in all adult caenolestids, dasyurids, Myrmecobius, Notoryctes, peramelids, vombatids, and phascolarctids. Pouch young of Perameles sp. and Dasyurus viverrinus show a bicrurate stapes with a sizeable stapedial foramen. Some didelphids examined to date show a double insertion of the Tensor tympani muscle. Some differences exist between M. domestica and C. philander in adult ossicle form, including the relative length of the incudal crus breve and of the stapes. Several differences exist between the malleus of didelphids and that of some phalangeriforms, the latter showing a short neck, absence of the lamina, and a ventrally directed manubrium. Hearing starts in M. domestica at an age in which the external auditory meatus has not yet fully developed, the ossicles are not fully ossified, and the middle ear space is partially filled with loose mesenchyme. The ontogenetic changes in hearing abilities in M. domestica between postnatal days 30 and 40 may be at least partially related to changes in middle ear structures.  相似文献   

6.
The morphology of the middle ear region including die basicranium and quadrate of Strulhxo is very simil.n to ilic same region in the orders Procellariiformes, Pelecaniformes, Ciconiiformes and Sphenisciformes. Struthio though, has some unique middle ear characters such as die lack of a chorda tympani nerve, the arrangement of die glossopharyngeal and vagus nerve foramina, die structure in the upper neck of die external ophthalmic vein and die position of die Eustachian tube. The articulatory surfaces for the quadrate bom on die zygomatic process of the squamosal and the mandible are unique in Struthio when compared to the several orders mentioned above.  相似文献   

7.

Objectives/Hypothesis

Due to its anatomical features, the chorda tympani nerve (CTN) is sometimes sacrificed during middle ear surgery, resulting in taste dysfunction. We examined the effect of placing an artificial nerve conduit, a polyglycolic acid (PGA)-collagen tube, across the gap in the section of the resected chorda tympani nerve (CTN) running through the tympanic cavity.

Methods

The CTN was reconstructed with a PGA-collagen tube in three patients with taste disturbance who underwent CTN resection. To evaluate the effect of the reconstruction procedure on the patients'' gustatory function, we measured the patients'' electrogustometry (EGM) thresholds. The patients were followed-up for at least two years.

Results

Gustatory function was completely restored in all of the patients after the reconstruction. The patients'' EGM thresholds exhibited early improvements within one to two weeks and had returned to their normal ranges within three months. They subsequently remained stable throughout the two-year follow-up period. In a patient who underwent a second surgical procedure, it was found that the PGA-collagen tube used in the first surgical procedure had been absorbed and replaced by new CTN fibers with blood vessels on their surfaces.

Conclusion

These results suggest that reconstruction of the CTN with an artificial nerve conduit, a PGA-collagen tube, allows functional and morphological regeneration of the nerve and facilitates the recovery of taste function. PGA-collagen tubes might be useful for repairing CTNs that are resected during middle ear surgery. Further research is required to confirm these preliminary results although this is the first report to describe the successful regeneration of a nerve running through an aerial space.  相似文献   

8.
Tongue embryonic taste buds begin to differentiate before the onset of gustatory papilla formation in murine. In light of this previous finding, we sought to reexamine the developing sensory innervation as it extends toward the lingual epithelium between E 11.5 and 14.5. Nerve tracings with fluorescent lipophilic dyes followed by confocal microscope examination were used to study the terminal branching of chorda tympani and lingual nerves. At E11.5, we confirmed that the chorda tympani nerve provided for most of the nerve branching in the tongue swellings. At E12.5, we show that the lingual nerve contribution to the overall innervation of the lingual swellings increased to the extent that its ramifications matched those of the chorda tympani nerve. At E13.0, the chorda tympani nerve terminal arborizations appeared more complex than those of the lingual nerve. While the chorda tympani nerve terminal branching appeared close to the lingual epithelium that of the trigeminal nerve remained rather confined to the subepithelial mesenchymal tissue. At E13.5, chorda tympani nerve terminals projected specifically to an ordered set of loci on the tongue dorsum corresponding to the epithelial placodes. In contrast, the lingual nerve terminals remained subepithelial with no branches directed towards the placodes. At E14.5, chorda tympani nerve filopodia first entered the apical epithelium of the developing fungiform papilla. The results suggest that there may be no significant delay between the differentiation of embryonic taste buds and their initial innervation.  相似文献   

9.
Cochleae (125) from 26 species of the rodent family Heteromyidae (genera Dipodomys. Microdipodops, Perognathus, and Liomys) were compared. In Perognathus and Liomys the scala tympani in the apical portion is extremely narrow with a correspondingly minute helicotrema. In Liomys there is no bone separating scala tympani from spiral ganglion in the upper second and entire third turn. In all species studied the zona pectinata of the basilar membrane is enlarged, with a hyaline mass between upper and lower basilar membrane fibers. This zona pectinata hypertrophy is least at the base of the cochlea and greatest in the upper second turn, decreasing again toward the apex. Basilar membrane width increases rapidly in the first turn and then changes only slightly. Except for Liomys, all the heteromyids studied have hypertrophied Hensen's cells with long apical processes supporting and forming an elevated reticular lamina. These Hensen's cells reach their maximum size in the upper second and lower third turns; throughout they rest on inner Claudius' cells rather than the basilar membrane. Relative to naso-occipital length the cochlear specializations are greatest in Microdipodops and least in Liomys just as is the case for middle ear modifications. The morphological data are consistent with the concept that standing wave phenomena may be important in heteromyid cochlear biomechanics. Single unit data of other workers are also consistent with this interpretation. Like middle ear morphology, inner ear morphology appears adapted to low-frequency sensitivity–especially in Dipodomys and Microdipodops.  相似文献   

10.
The anterior anchoring of the malleus of 30 extant species of Lagomorpha (rabbits, hares, pikas) has been studied on the basis of histological serial sections and µCT‐scans. It is shown that former studies of Oryctolagus, Lepus, and Ochotona are incomplete, because the rostral part of the processus anterior of the malleus is always lacking due to damage of this extremely delicate structure. Our study shows that in perinatal stages of Leporidae the praearticulare develops a prominent processus internus that fits into a groove at the ventral side of the tegmen tympani; this “tongue and groove”‐arrangement may act as a hinge. In adult stages, the rostral end of the praearticulare fuses synostotically with the medial process of the ectotympanic. Torsional strain produced by rotation around the axis of the middle ear ossicles at sound transmission must, therefore, be experienced by the extremely thin but highly elastic bony pedicle of the processus internus praearticularis. The free ending processus anterior of a late fetal Ochotona shows a short processus internus praearticularis, which does not articulate with the tegmen tympani. During postnatal development the middle ear of Ochotona becomes considerably remodelled: not only does excessive pneumatization of the tegmen tympani and tympanic cavity wall occur, but the short processus anterior is fused synostotically to a bone trabecula of the tegmen tympani meshwork. The thin and elastic bone bridges are not equivalent in Leporidae and Ochotonidae, that is, they must have evolved convergently. Fleischer's classification with Oryctolagus possessing a “freely mobile type” of middle ear ossicles cannot be supported by our observations. The same holds true for Ochotona, which does not represent a “freely mobile type” either. Thus, we suggest for the lagomorph middle ear ossicles a new category: the “bone elasticity type.”  相似文献   

11.
Effects of tetrodotoxin (TTX) on neural responses of the chorda tympani to four basic taste stimuli were investigated electrophysiologically in rats. When the TTX (10 mg/ml) was applied directly to the tongue surface for 3 minutes, magnitude of the integrated responses of the chorda tympani was diminished to about 60% of that of the control response. This diminution of response was recovered within 30 minutes by degrees and the effect of the TTX was antagonized by guanylate. This result gives a suggestion that guanidyl group in the TTX may play an important role for the inhibitory actions to the responses of the chorda tympani. On the other hand, when the TTX (0.25 mg/100 g b. wt.) was applied intravenously, magnitude of the responses of the chorda tympani to four basic taste stimuli decreased gradually to 20 approximately 30% of that of the control responses within 60 minutes and did not recover more than 10 hours. This is assumed due to the blocking of the sodium pump of nerve fibers in the chorda tympani by the TTX.  相似文献   

12.
Effects of chorda tympani nerve anesthesia on taste responses in the NST   总被引:1,自引:0,他引:1  
Dinkins  ME; Travers  SP 《Chemical senses》1998,23(6):661-673
Human clinical and psychophysical observations suggest that the taste system is able to compensate for losses in peripheral nerve input, since patients do not commonly report decrements in whole mouth taste following chorda tympani nerve damage or anesthesia. Indeed, neurophysiological data from the rat nucleus of the solitary tract (NST) suggests that a release of inhibition (disinhibition) may occur centrally following chorda tympani nerve anesthesia. Our purpose was to study this possibility further. We recorded from 59 multi- and single- unit taste-responsive sites in the rat NST before, during and after recovery from chorda tympani nerve anesthesia. During anesthesia, average anterior tongue responses were eliminated but no compensatory increases in palatal or posterior tongue responses were observed. However, six individual sites displayed increased taste responsiveness during anesthesia. The average increase was 32.9%. Therefore, disinhibition of taste responses was observed, but infrequently and to a small degree in the NST At a subset of sites, chorda tympani-mediated responses decreased while greater superficial petrosal-mediated responses remained the same during anesthesia. Since this effect was accompanied by a decrease in spontaneous activity, we propose that taste compensation may result in part by a change in signal-to-noise ratio at a subset of sites.   相似文献   

13.
The Achilles is the thickest tendon in the body and is the primary elastic energy-storing component during running. The form and function of the human Achilles is complex: twisted structure, intratendinous interactions, and differential motor control from the triceps surae muscles make Achilles behavior difficult to intuit. Recent in vivo imaging of the Achilles has revealed nonuniform displacement patterns that are not fully understood and may result from complex architecture and musculotendon interactions. In order to understand which features of the Achilles tendon give rise to the nonuniform deformations observed in vivo, we used computational modeling to predict the mechanical contributions from different features of the tendon. The aims of this study are to: (i) build a novel computational model of the Achilles tendon based on ultrashort echo time MRI, (ii) compare simulated displacements with published in vivo ultrasound measures of displacement, and (iii) use the model to elucidate the effects of tendon twisting, intratendon sliding, retrocalcaneal insertion, and differential muscle forces on tendon deformation. Intratendon sliding and differential muscle forces were found to be the largest factors contributing to displacement nonuniformity between tendon regions. Elimination of intratendon sliding or muscle forces reduced displacement nonuniformity by 96% and 85%, respectively, while elimination of tendon twist and the retrocalcaneal insertion reduced displacement nonuniformity by only 35% and 3%. These results suggest that changes in the complex internal structure of the tendon alter the interaction between muscle forces and tendon behavior and therefore may have important implications on muscle function during movement.  相似文献   

14.
The aim of the investigation was to reveal the possibility to draw into the pathological process known as the "Costen syndrome" the formations mentioned in the title. The investigation performed by means of the craniometry method on 150 mature person skulls, that are rather evenly distributed according to their sex, age and form, and simultaneous investigation of 70 heads of corpses of persons of both sex, gave the data denying the possibility of mechanical damage of the chorda tympani, when the mandibular head is shifted backward or medially. This phenomenon can be observed at a loss of teeth and lowered bite. When the mandibular head is shifted backward, it does not involve the chorda tympani, since the nerve gets out of the osseous canal more medially to the spine of the sphenoid bone. The medial shift of the mandibular head also cannot damage the chorda tympani, since the nerve is separated from the joint by a marked osseous protrusion. At the same time the data are obtained on variations in topography of the chorda tympani at various form of the intratemporal fossa. It has been stated that when a pathological process occurs around the temporomandibular joint, the auriculotemporal nerve and the anterior tympanic artery can be involved into this process. This can produce appearance of the "Costen syndrome" components.  相似文献   

15.
1. Single chorda tympani fibres sensitive to monosodium L-glutamate (MSG), elicit a unique taste in humans and gave a greater response to NaCl and/or sucrose than to MSG whereas several MSG-sensitive glossopharyngeal fibres responded only slightly if at all to NaCl and sucrose. 2. The across-fibre correlations showed that MSG and NaCl produced similar response patterns in the chorda tympani fibres but different response patterns in the glossopharyngeal fibres. 3. These results suggest that taste information of glossopharyngeal fibres plays a relatively more important role in the qualitative discrimination between MSG and the four basic taste substances than that of chorda tympani fibres.  相似文献   

16.
The time course of structural changes in fungiform papillae was analyzed in rats that received unilateral chorda tympani nerve transection at 10 days of age. Morphological differences between intact and denervated sides of the tongue were first observed at 8 days postsection, with an increase in the number of fungiform papillae that did not have a pore. In addition, the first papilla with a filiform-like appearance was noted on the denervated side at 8 days postsectioning. By 11 days after surgery, the total number of papillae and the number of papillae with a pore were significantly lower on the transected side of the tongue as compared to the intact side. At 50 days postsection, there was an average of 70.5 fungiform papillae on the intact side and a mean of only 20.8 fungiform papillae the denervated side. Of those few remaining papillae on the cut side, an average of 13.5 papillae were categorized as filiform-like, while no filiform-like papillae occurred on the intact side. Significant reduction in taste bud volume was noted at 4 days posttransection and further decrements in taste bud volume were noted at 8 and 30 days postsection. Electron microscopy of the lingual branch of the trigeminal nerve from adult rats that received neonatal chorda tympani transection showed normal numbers of both myelinated and unmyelinated fibers. Thus, in addition to the well-characterized dependence of taste bud maintenance on the chorda tympani nerve, the present study shows an additional role of the chorda tympani nerve in papilla maintenance during early postnatal development.  相似文献   

17.

Background

The polycystic kidney disease-like ion channel PKD2L1 and its associated partner PKD1L3 are potential candidates for sour taste receptors. PKD2L1 is expressed in type III taste cells that respond to sour stimuli and genetic elimination of cells expressing PKD2L1 substantially reduces chorda tympani nerve responses to sour taste stimuli. However, the contribution of PKD2L1 and PKD1L3 to sour taste responses remains unclear.

Methodology/Principal Findings

We made mice lacking PKD2L1 and/or PKD1L3 gene and investigated whole nerve responses to taste stimuli in the chorda tympani or the glossopharyngeal nerve and taste responses in type III taste cells. In mice lacking PKD2L1 gene, chorda tympani nerve responses to sour, but not sweet, salty, bitter, and umami tastants were reduced by 25–45% compared with those in wild type mice. In contrast, chorda tympani nerve responses in PKD1L3 knock-out mice and glossopharyngeal nerve responses in single- and double-knock-out mice were similar to those in wild type mice. Sour taste responses of type III fungiform taste cells (GAD67-expressing taste cells) were also reduced by 25–45% by elimination of PKD2L1.

Conclusions/Significance

These findings suggest that PKD2L1 partly contributes to sour taste responses in mice and that receptors other than PKDs would be involved in sour detection.  相似文献   

18.
A phylogenetic analysis based on a data matrix of 43 taxa and 155 osteological characters has produced a new hypothesis of tetrapod phylogeny that is drastically different from the established consensus. Among Paleozoic taxa, only diadectomorphs appear to be related to amniotes. In contrast to previous hypotheses, lissamphibians appear to have been derived from lepospondyls. Seymouriamorphs, gephyrostegids, embolomeres, temnospondyls, and loxommatids are stem-tetrapods. The new phylogeny suggests that the absence of a tympanic middle ear in salamanders and gymnophiones is a primitive character.  相似文献   

19.
20.
Although a strong correlation between jaw mechanics and prey selection has been demonstrated in bony fishes (Osteichthyes), how jaw mechanics influence feeding performance in cartilaginous fishes (Chondrichthyes) remains unknown. Hence, tooth shape has been regarded as a primary predictor of feeding behavior in sharks. Here we apply Finite Element Analysis (FEA) to examine form and function in the jaws of two threatened shark species, the great white (Carcharodon carcharias) and the sandtiger (Carcharias taurus). These species possess characteristic tooth shapes believed to reflect dietary preferences. We show that the jaws of sandtigers and great whites are adapted for rapid closure and generation of maximum bite force, respectively, and that these functional differences are consistent with diet and dentition. Our results suggest that in both taxa, insertion of jaw adductor muscles on a central tendon functions to straighten and sustain muscle fibers to nearly orthogonal insertion angles as the mouth opens. We argue that this jaw muscle arrangement allows high bite forces to be maintained across a wider range of gape angles than observed in mammalian models. Finally, our data suggest that the jaws of sub-adult great whites are mechanically vulnerable when handling large prey. In addition to ontogenetic changes in dentition, further mineralization of the jaws may be required to effectively feed on marine mammals. Our study is the first comparative FEA of the jaws for any fish species. Results highlight the potential of FEA for testing previously intractable questions regarding feeding mechanisms in sharks and other vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号