首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dronedarone, a noniodinated benzofuran derivative of amiodarone, is believed to have a better side effect profile, and is currently undergoing phase III clinical trials. A novel method was developed for the determination of dronedarone and its principal metabolite debutyldronedarone in both plasma and myocardial tissue by high-performance liquid chromatography (HPLC) coupled with UV-detection. The assay was also validated for determination of amiodarone and desethylamiodarone. Samples were obtained from healthy humans (plasma) and goats (plasma and myocardium). Sample preparation included deproteinization with acetonitrile and extraction with a mixture of heptane and dichloromethane (50/50, v/v). Chromatographic separation was performed on a Pathfinder PS polymeric C18 column (50 mm × 4.6 mm, 2.5 μm) with a mobile phase of acetonitrile, isopropanol, water and ammonia (80/10/10/0.025, v/v/v/v) at a flow-rate of 1 ml/min. Calibration curves of all analytes were linear in the range of 0.01–5 μg/ml for plasma samples, with a lower limit of quantification (LLOQ) of 0.04 μg/ml. For myocardial tissue samples, linear curves of all analytes were observed in the range of 0.02–500 μg/g, with a LLOQ of 0.08 μg/g. Within- and between-day precision was <18%, and within- and between-day accuracy ranged from 97.5 to 109.7%, with a recovery of 67.6–79.9%. The present method enables sensitive and specific detection of dronedarone, amiodarone and principal metabolites in plasma as well as myocardial tissue.  相似文献   

2.
A sensitive and specific method using ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was developed for the determination of levetiracetam (LEV) in plasma of neonates. A plasma aliquot of 50 μl was deproteinized by addition of 500 μl methanol which contained 5 μg/ml UCB 17025 as an internal standard. After centrifugation, 50 μl of supernatant was diluted with 1000 μl of 0.1% formic acid–10 mM ammonium formate in water (pH 3.5) (mobile phase solution A) and 2 μl was injected onto the UPLC-system. Compounds were separated on a Acquity UPLC BEH C18 2.1 mm × 100 mm column using gradient elution with mobile phase solution A and 0.1% formic acid in methanol (mobile phase solution B) with a flow rate of 0.4 ml/min and a total runtime of 4.0 min. LEV and the internal standard were detected using positive ion electrospray ionization followed by tandem mass spectrometry (ESI-MS/MS). The assay allowed quantification of LEV plasma concentrations in the range from 0.5 μg/ml to 150 μg/ml. Inter-assay inaccuracy was within ±2.7% and inter-assay precision was less than 4.5%. Matrix effects were minor: the recovery of LEV was between 97.7% and 100%. The developed method required minimal sample preparation and less plasma sample volume compared to earlier published LC–MS/MS methods. The method was successfully applied in a clinical pharmacokinetic study in which neonates received intravenous administrations of LEV for the treatment of neonatal seizures.  相似文献   

3.
A rapid and sensitive CE method for the determination of 4-aminopyridine in human plasma using 3,4-diaminopyridine as an internal standard was developed and validated. The analytes were extracted from 0.5-mL aliquots of human plasma by liquid–liquid extraction, using 8 mL of ethyl ether, and injected electrokinetically into capillary electrophoresis equipment. The instrumental conditions were obtained and optimized by Design of Experiments (DOE – factorial and response surface model), having as factors: separation voltage, ionic strength (buffer concentration), pH and temperature. The response variables were migration time, resolution, tailing factor and drug peak area. After obtaining mathematically predicted values for the response variables with best factors combinations, these were reproduced experimentally in good agreement with predicted values. In addition to optimal separation conditions obtained by Design of Experiments, sensitivity was improved using electrokinetic injection at 10 kV for 10 s, and a capillary with 50 cm effective length and 100 μm I.D. The final instrumental conditions were voltage at 19 kV, capillary temperature at 15 °C, wavelength at 254 nm, and phosphate buffer 100 mM, pH 2.5 as the background electrolyte. This assay was linear over a concentration range of 2.5–80 ng/mL with a lower limit of quantification of 2.5 ng/mL. The relative standard deviation for the assay precision was <7% and the accuracy was >95%. This method was successfully applied to the quantification of 4-aminopyridine (4-AP) in plasma samples from patients with spinal cord injury.  相似文献   

4.
We present herein a sensitive and selective assay for the determination of oxycodone and its main metabolites, oxymorphone, noroxycodone and noroxymorphone in human plasma, using column-switching and liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). Sample preparation comprised protein precipitation with perchloric acid. After neutralization, the supernatant was injected without any evaporation step onto a polymeric, pH-resistant cartridge (HySphere Resin GP 10–12 μm) for sample clean-up (Prospekt II). The latter operation was achieved by using alkaline conditions to ensure retention of analytes and methanol for matrix interference removal. More than two hundred plasma samples could be analyzed with a single cartridge. Analytes were desorbed in the backflush mode and were separated on a conventional reversed phase column (XTerra MS 4.6 × 50 mm, 3.5 μm), using an acidic mobile phase (i.e. containing 0.1% of formic acid). Mass spectrometric detection was achieved with a 4000 Q TRAP equipped with an atmospheric pressure chemical ionization (APCI) source, in positive ionization mode, operated in the selected reaction monitoring mode (SRM). Starting from a plasma volume of 250 μl, quantification ranges were 25–10,000 pg/ml for OXM and NOXM and 50–10,000 pg/ml for OXC and NOXC. Accuracy was found to be within 98% and 108% and precision better than 7%. Replicate determination of incurred or study samples ensured the method to be reproducible and usable for clinical studies.  相似文献   

5.
A rapid, sensitive and specific high performance liquid chromatography–tandem mass spectrometric (HPLC–MS/MS) method has been developed for quantification of mitoxantrone in rat plasma. The analyte and palmatine (internal standard) were extracted from plasma samples with diethyl ether–dichloromethane (3:2, v/v) and separated on a C18 column. The chromatographic separation was achieved within 2.5 min using methanol–10 mM ammonium acetate containing 0.1% acetic acid as the mobile phase at a flow rate of 0.2 mL/min. The method was linear over the range of 0.5–500 ng/mL. The lower limit of quantification (LLOQ) was 0.5 ng/mL. Finally, the method was successfully applied to a pharmacokinetic study of mitoxantrone in rats following intravenous administration.  相似文献   

6.
A rapid high-performance liquid chromatography–mass spectrometry (HPLC–MS) method was developed and validated for simultaneous quantification of 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol in rat plasma after oral administration of ginger oleoresin. Plasma samples extracted with a liquid–liquid extraction procedure were separated on an Agilent Zorbax StableBond-C18 column (4.6 mm × 50 mm, 1.8 μm) and detected by MS with electrospray ionization interface in positive selective ion monitoring (SIM) mode. Calibration curves (1/x2 weighted) offered satisfactory linearity (r2 > 0.995) in a wide linear range (0.0104–13.0 μg/mL for 6-gingerol, 0.00357–4.46 μg/mL for 8-gingerol, 0.00920–11.5 μg/mL for 10-gingerol and 0.00738–9.22 μg/mL for 6-shogaol). The lower limit of quantification (LLOQ) was in a range of 3.57–10.4 ng/mL. The analytes and internal standard can be baseline separated within 6 min. Inter- and intra-day assay variation was less than 15%. This developed method was successfully applied to pharmacokinetic studies of ginger oleoresin after oral administration to rats. Glucuronide of 6-gingerol was determined after β-glucuronidase hydrolysis for more information, and the intestinal glucuronidation was further confirmed by comparison of plasma samples of hepatic portal vein and femoral vein.  相似文献   

7.
A sensitive ultra performance liquid chromatography–mass spectrometry method has been developed and validated for the quantification of taxifolin in rat plasma. Following liquid/liquid extraction by ethyl acetate, the analytes were separated on a Sunfire? (2.1 mm × 50 mm, 3.5 μm) column and analyzed in the selected ion recording with a negative electrospray ionization mode. The method was linear over the concentration range of 6–6750 ng/mL. Intra- and inter-day precisions were all within 8% and accuracy ranged from 92.9% to 105.1%. The lower limit of quantification was 6 ng/mL. The present method was successfully applied to the estimation of the pharmacokinetic parameters of taxifolin following intravenous and oral administration to rats. The absolute bioavailability of taxifolin was 0.17% in rat.  相似文献   

8.
A rapid and sensitive LC–MS/MS method for the determination of vardenafil and its major metabolite, N-desethylvardenafil, in human plasma using sildenafil as an internal standard was developed and validated. The analytes were extracted from 0.25-mL aliquots of human plasma by liquid–liquid extraction, using 1 mL of ethyl acetate. Chromatographic separation was carried on a Luna C18 column (50 mm × 2.0 mm, 3 μm) at 40 °C, with an isocratic mobile phase consisting of 10 mM ammonium acetate (pH 5.0) and acetonitrile (10:90, v/v), a flow rate of 0.2 mL/min, and a total run time of 2 min. Detection and quantification were performed using a mass spectrometer in the selected reaction-monitoring mode with positive electrospray ionization at m/z 489.1  151.2 for vardenafil, m/z 460.9  151.2 for N-desethylvardenafil, and m/z 475.3  100.1 for the internal standard (IS), respectively. This assay was linear over a concentration range of 0.5–200 ng/mL with a lower limit of quantification of 0.5 ng/mL for both vardenafil and N-desethylvardenafil. The coefficient of variation for the assay precision was <13.6%, and the accuracy was >93.1%. This method was successfully applied to a pharmacokinetic study after oral administration of vardenafil 20 mg tablet in Korean healthy male volunteers.  相似文献   

9.
A reversed-phase liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method was developed and validated for simultaneous determination of ABT-888 and its major metabolite (M8) in human plasma. Sample preparation involved a liquid–liquid extraction by the addition of 0.25 ml of plasma with 10 μl of 1 M NaOH and 1.0 ml ethyl acetate containing 50 ng/ml of the internal standard zileuton. The analytes were separated on a Waters XBridge C18 column using a gradient mobile phase consisting of methanol/water containing 0.45% formic acid at the flow rate of 0.2 ml/min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the ABT-888 and M8 concentration ranges of 1–2000 ng/ml in human plasma. The lower limits of quantitation (LLOQ) were 1 ng/ml for both ABT-888 and M8 in human plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical method (<15%). This method was successfully employed to characterize the plasma concentration–time profile of ABT-888 after its oral administration in cancer patients.  相似文献   

10.
A quantitative assay for simultaneous measurement of individual human neutrophil peptide-1, -2 and -3 concentrations will aid in exploring the potential of these antimicrobial peptides as biomarkers for various diseases. Therefore, a liquid chromatography–tandem mass spectrometry method has been developed and validated to allow separate quantification of the three human neutrophil peptides in human plasma and serum. Plasma and serum samples (100 μl) were deproteinized by precipitation, followed by chromatographic separation on a Symmetry 300 C18 column (50 mm × 2.1 mm I.D., particle size 3.5 μm), using a water–methanol gradient containing 0.25% (v/v) formic acid and human alpha-defensin 5 as internal standard. Tandem mass spectrometric detection was performed on a triple quadrupole mass spectrometer equipped with electrospray ionization. Despite low fragmentation efficiency of the antimicrobial peptides, multiple reaction monitoring was used for detection, though selecting the quaternary charged ions as both precursor and product. The method was linear for concentrations between 5 and 1000 ng/ml with a limit of detection around 3 ng/ml for all peptides. Intra- and inter-assay precisions were 14.8 and 19.1%, respectively, at the lowest measured endogenous concentration (6.4 ng/ml of HNP-1 in plasma), representing the lower limit of quantification of the assay. Recoveries of HNP-1, -2 and -3 from plasma and serum ranged between 85 and 128%. Analysis of serum samples from intensive care patients showed average concentrations of 362, 570 and 143 ng/ml for HNP-1, -2 and -3, respectively.  相似文献   

11.
A new simple, rapid, sensitive and accurate quantitative detection method using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) for the measurement of formononetin (FMN) and daidzein (DZN) levels in rat plasma is described. Analytes were separated on a Supelco Discovery C18 (4.6 × 50 mm, 5.0 μm) column with acetonitrile: methanol (50:50, v/v) and 0.1% acetic acid in the ratio of 90:10 (v/v) as a mobile phase. The method was proved to be accurate and precise at linearity range of 5–100 ng/mL with a correlation coefficient (r) of ≥0.996. The intra- and inter-day assay precision ranged from 1.66–6.82% and 1.87–6.75%, respectively; and intra- and inter-day assay accuracy was between 89.98–107.56% and 90.54–105.63%, respectively for both the analytes. The lowest quantitation limit for FMN and DZN was 5.0 ng/mL in 0.1 mL of rat plasma. Practical utility of this new LC–MS/MS method was demonstrated in a pharmacokinetic study in rats following intravenous administration of FMN.  相似文献   

12.
Emtricitabine (FTC) and tenofovir (TFV) are widely used antiviral agents that require intracellular phosphorylation to become active. This article describes the development and validation of an assay for the simultaneous quantification of FTC mono-, di- and triphosphate (FTC-MP, -DP and -TP), TFV and TFV mono- and diphosphate (TFV-MP and -DP) in peripheral blood mononuclear cells. Reference compounds and internal standards were obtained by thermal degradation of FTC-TP, TFV-DP, stable isotope-labeled TFV-DP and stable isotope-labeled cytosine triphosphate. Cells were lysed in methanol:water (70:30, v/v) and the extracted nucleotides were analyzed using weak anion-exchange chromatography coupled with tandem mass spectrometry. Calibration ranges in PBMC lysate from 0.727 to 36.4, 1.33 to 66.4 and 1.29 to 64.6 nM for FTC-MP, FTC-DP and FTC-TP and from 1.51 to 75.6, 1.54 to 77.2 and 2.54 to 127 nM for TFV, TFV-MP and TFV-DP, respectively, were validated. Accuracies were within ?10.3 and 16.7% deviation at the lower limit of quantification at which the coefficients of variation were less than 18.2%. At the other tested levels accuracies were within ?14.3 and 9.81% deviation and the coefficients of variation lower than 14.7%. The stability of the compounds was assessed under various analytically relevant conditions. The method was successfully applied to clinical samples.  相似文献   

13.
A novel validated liquid chromatography–tandem mass spectrometry (LC–MS/MS) procedure was developed and fully validated for the simultaneous determination of nicotine-N-β-d-glucuronide, cotinine-N-oxide, trans-3-hydroxycotinine, norcotinine, trans-nicotine-1′-oxide, cotinine, nornicotine, nicotine, anatabine, anabasine and cotinine-N-β-d-glucuronide in human plasma or urine. Target analytes and corresponding deuterated internal standards were extracted by solid-phase extraction and analyzed by LC–MS/MS with electrospray ionization (ESI) using multiple reaction monitoring (MRM) data acquisition. Calibration curves were linear over the selected concentration ranges for each analyte, with calculated coefficients of determination (R2) of greater than 0.99. The total extraction recovery (%) was concentration dependent and ranged between 52–88% in plasma and 51–118% in urine. The limits of quantification for all analytes in plasma and urine were 1.0 ng/mL and 2.5 ng/mL, respectively, with the exception of cotinine-N-β-d-glucuronide, which was 50 ng/mL. Intra-day and inter-day imprecision were ≤14% and ≤17%, respectively. Matrix effect (%) was sufficiently minimized to ≤19% for both matrices using the described sample preparation and extraction methods. The target analytes were stable in both matrices for at least 3 freeze–thaw cycles, 24 h at room temperature, 24 h in the refrigerator (4 °C) and 1 week in the freezer (?20 °C). Reconstituted plasma and urine extracts were stable for at least 72 h storage in the liquid chromatography autosampler at 4 °C. The plasma procedure has been successfully applied in the quantitative determination of selected analytes in samples collected from nicotine-abstinent human participants as part of a pharmacokinetic study investigating biomarkers of nicotine use in plasma following controlled low dose (7 mg) transdermal nicotine delivery. Nicotine, cotinine, trans-3-hydroxycotinine and trans-nicotine-1′-oxide were detected in the particular sample presented herein. The urine procedure has been used to facilitate the monitoring of unauthorized tobacco use by clinical study participants at the time of physical examination (before enrollment) and on the pharmacokinetic study day.  相似文献   

14.
A reverse-phase liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method was developed and validated for determination of aminoflavone (AF) in human plasma. Sample preparation involved a liquid–liquid extraction by the addition of 0.25 mL of plasma with 1.0 mL ethyl acetate containing 50 ng/mL of the internal standard zileuton. The analytes were separated on a Waters X-Terra? MS C18 column using a mobile phase consisting of methanol/water containing 0.45% formic acid (70:30, v/v) and isocratic flow at 0.2 mL/min for 6 min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the AF concentration range of 5–2000 ng/mL in human plasma. The lower limit of quantitation (LLOQ) was 5 ng/mL for AF in human plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical method (<15%). This method was successfully applied to characterize AF plasma concentration-time profile in the cancer patients in a phase I trial.  相似文献   

15.
A rapid and simple liquid chromatography–fluorescence detection (LC–FD) method was developed and validated for the simultaneous quantification of irinotecan (CPT11) and SN38 in sheep plasma. Camptothecin (CPT) was used as the internal standard. A single step protein precipitation with acetonitrile was used for sample preparation. The separation was achieved using a 5 μm C18 column (250 mm × 4.5 mm, 5 μm) with a mobile phase composed of 36 mM sodium dihydrogen phosphate dehydrate and 4 mM sodium 1 heptane sulfonate–acetonitrile (72:28), the pH of the mobile phase was adjusted to 3. The flow rate was 1.45 mL/min and the fluorescence detection was operated at 355/515 nm (excitation/emission wavelengths). The run time was 13 min. The method was validated with respect to selectivity, extraction recovery, linearity, intra- and inter-day precision and accuracy, limit of quantification and stability. The method has a limit of quantification of 5 ng/mL for both CPT11 and SN38. The assay was linear over concentrations ranging from 5 to 5000 ng/mL and to 240 ng/mL for CPT11 and SN38, respectively. This method was used successfully to perform plasma pharmacokinetic studies of CPT11 after pulmonary artery embolization (PACE) in a sheep model. It was also validated for CPT11 and SN38 analysis in sheep lymph and human plasma.  相似文献   

16.
For the first time, a highly sensitive and simple LC–MS/MS method after one-step precipitation was developed and validated for the simultaneous determination of paracetamol (PA), pseudoephedrine (PE), dextrophan (DT) and chlorpheniramine (CP) in human plasma using diphenhydramine as internal standard (IS). The analytes and IS were separated on a YMC-ODS-AQ C18 Column (100 mm × 2.0 mm, 3 μm) by a gradient program with mobile phase consisting of 0.3% (v/v) acetic acid and methanol at a flow rate of 0.30 mL/min. Detection was performed on a triple quadrupole tandem mass spectrometer via electrospray ionization in the positive ion mode. The method was validated and linear over the concentration range of 10–5000 ng/mL for PA, 2–1000 ng/mL for PE, 0.05–25 ng/mL for DT and 0.1–50 ng/mL for CP. The accuracies as determined from quality control samples were in range of ?8.37% to 3.13% for all analytes. Intra-day and inter-day precision for all analytes were less than 11.54% and 14.35%, respectively. This validated method was successfully applied to a randomized, two-period cross-over bioequivalence study in 20 healthy Chinese volunteers receiving multicomponent formulations containing 325 mg of paracetamol, 30 mg of pseudoephedrine hydrochloride, 15 mg of dextromethorphan hydrobromide and 2 mg of chlorphenamine maleate.  相似文献   

17.
18.
A rapid and sensitive method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) for enantiomeric determination of tramadol and its primary phase metabolite O-desmethyltramadol in human plasma has been developed. Tramadol hydrochloride – 13C, d3, was used as an isotopic labeled internal standard for quantification. The method involves a simple solid phase extraction. The analytes and internal standard were separated on Lux Cellulose-2 packed with cellulose tris(3-chloro-4-methylphenylcarbamate) using isocratic elution with hexane/isopropanol/diethylamine (90:10:0.1, v/v/v) at a flow rate of 1.3 mL/min. The APCI positive ionization mass spectrometry was used with multiple reaction monitoring of the transitions at m/z 264.2  58.2 for tramadol, m/z 250.1  58.2 for O-desmethyltramadol and m/z 268.2  58.2 for internal standard. Linearity was achieved between 1–800 ng/mL and 1–400 ng/mL (R2  0.999) for each enantiomer of tramadol and O-desmethyltramadol, respectively. Intra-day accuracies ranged among 98.2–102.8%, 97.1–109.1% and 97.4–102.9% at the lower, intermediate, and high concentration for all analytes, respectively. Inter-day accuracies ranged among 95.5–104.1%, 99.2–104.7%, and 94.2–105.6% at the lower, intermediate, and high concentration for all analytes, respectively. This assay was successfully used to determine the concentration of enantiomers of tramadol and O-desmethyltramadol in a pharmacogenetic study.  相似文献   

19.
A simple, sensitive and specific high-performance liquid chromatography method has been developed for the determination of nortriptyline (NT) in plasma samples. The assay involved derivatization with 9H-fluoren-9-ylmethyl chloroformate (Fmoc-Cl) and isocratic reversed-phase (C18) chromatography with fluorescence detection. The developed method required only 100 μl of plasma sample, deproteinized and derivatized in one step. Calibration curves were lineal over the concentration range of 5–5000 ng/ml. The derivatization reaction was performed at room temperature in 20 min and the obtained NT derivative was stable for at least 48 h at room temperature. The within-day and between-day relative standard deviation was below 8%. The limit of detection (LOD) was 2 ng/ml, and the lower limit of quantification (LLOQ) was established at 10 ng/ml. The method was applied on plasma collected from rats, at different time intervals, after intravenous administration of 0.5 mg of NT.  相似文献   

20.
A LC–MS/MS method was developed and validated for determination of nucleoside analog (NA) in rat plasma. The method run time was 6 min and the limit of quantification (LOQ) was estimated at 100 pg/mL. The extraction procedure consisted on plasma samples protein precipitation with an acetonitrile solution which contained the stable isotope labeled internal standard (IS). Chromatography was performed on a newly developed C16 column (150 mm × 4.6 mm, 5 μm) in order to avoid the use ion pair salts. The samples were eluted at 0.8 mL/min with a gradient of mobile phase made of water and acetonitrile both acidified with 0.5% acetic acid and 0.025% trifluoroacetic acid (TFA). A tandem mass spectrometer was used as a detector for quantitative analysis. Intra-run and inter-run precision and accuracy within ±15% were achieved during a 3-run validation for quality control samples at four concentration levels in rat plasma, over a concentration ranging between 0.1 and 1000 ng/mL. The data indicate that our LC–MS/MS assay is an effective method for the pharmacokinetics study of NA in rat plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号