首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galinsoga ciliata Raf. Blake like Galinsoga parviflora Cav., comes from the Andes region. The chemical composition, activity and use are similar for both species. Galinsoga species are used in folk medicine as anti-inflammatory agents and accelerators for wound healing. Extracts are applied topically onto the skin to treat dermatological diseases, eczemas, lichens and hard-healing-wounds, and also to treat snakebites. Orally they used to cure flu and colds.In the studies using HPTLC method, different stationary phases, including unmodified silica gel, silica gels modified with CN, NH2, DIOL and RP18 groups were tried. The best separation of the tested compounds was achieved on silica gel plates, when as mobile phases mixtures – ethyl acetate–acetic acid–formic acid–water (100:11:11:26, v/v/v/v), ethyl acetate–methanol–formic acid–water (50:3:4:6, v/v/v/v) and ethyl acetate–methyl ethyl ketone–formic acid–water (30:9:3:3, v/v/v/v) – were used. Using reference substances, in the examined extracts the presence of flavonoids: patulitrin, quercimeritrin, quercitagetrin, and phenolic acids – caffeic and chlorogenic acids was found.HPLC analyses of extracts were carried out on a reversed-phase Zorbax SB column (150 mm × 2.1 mm, 1.9 μm). The mobile phase (A) was water/acetonitrile/formic acid (95:5:0.1, v/v/v) and the mobile phase (B) was acetonitrile/formic acid (100:0.1, v/v). A linear gradient system was used: 0–30 min, 1–30% B. Application of HPLC-DAD-MS method confirmed the results obtained by HPTLC method. Moreover, in the tested extracts the presence of caffeoylglucaric acids as dominating compounds was detected.  相似文献   

2.
Pyrrole (Py)–imidazole (Im) polyamides synthesized by combining N-methylpyrrole and N-methylimidazole amino acids have been identified as novel candidates for gene therapy. In this study, a sensitive method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) with an electrospray ionization (ESI) source was developed and validated for the determination and quantification of Py–Im polyamide in rat plasma. Py–Im polyamide was extracted from rat plasma by solid-phase extraction (SPE) using a Waters Oasis® HLB cartridge. Separation was achieved on an ACQUITY UPLC HSS T3 (1.8 μm, 2.1 × 50 mm) column by gradient elution using acetonitrile:distilled water:acetic acid (5:95:0.1, v/v/v) and acetonitrile:distilled water:acetic acid (95:5:0.1, v/v/v). The method was validated over the range of 10–1000 ng/mL and the lower limit of quantification (LLOQ) was 10 ng/mL. This method was successfully applied to the investigation of the pharmacokinetics of Py–Im polyamide after intravenous administration.  相似文献   

3.
A fast and efficient preparative HPLC-PDA method was developed for the separation and isolation of four rare isomeric kaempferol diglycosides from leaves of Prunus spinosa L. The separation procedure of the enriched diglycoside fraction of the 70% (v/v) aqueous methanolic leaf extract was first optimised on analytical XBridge C18 column (100 mm × 4.6 mm i.d., 5 μm) and central composite design combined with response surface methodology was utilized to establish the optimal separation conditions. The developed method was directly transferred to preparative XBridge Prep C18 column (100 mm × 19 mm i.d., 5 μm) and the final separation was accomplished by isocratic elution with 0.5% acetic acid-methanol-tetrahydrofuran (75.2:16.6:8.2, v/v/v) as the mobile phase, at a flow rate of 13.6 mL/min, in less than 12 min for a single run. Under these conditions, four flavonoid diglycosides: kaempferol 3-O-α-l-arabinofuranoside-7-O-α-l-rhamnopyranoside, kaempferol 3,7-di-O-α-l-rhamnopyranoside (kaempferitrin), and reported for the first time for P. spinosa kaempferol 3-O-β-d-xylopyranoside-7-O-α-l-rhamnopyranoside (lepidoside) and kaempferol 3-O-α-l-arabinopyranoside-7-O-α-l-rhamnopyranoside, were isolated in high separation yield (84.8–94.5%) and purity (92.45–99.79%). Their structures were confirmed by extensive 1D and 2D NMR studies. Additionally, the UHPLC-PDA-ESI–MS3 qualitative profiling led to the identification of twenty-one phenolic compounds and confirmed that the isolates were the major components of the leaf material.  相似文献   

4.
A new simple, rapid, sensitive and accurate quantitative detection method using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) for the measurement of formononetin (FMN) and daidzein (DZN) levels in rat plasma is described. Analytes were separated on a Supelco Discovery C18 (4.6 × 50 mm, 5.0 μm) column with acetonitrile: methanol (50:50, v/v) and 0.1% acetic acid in the ratio of 90:10 (v/v) as a mobile phase. The method was proved to be accurate and precise at linearity range of 5–100 ng/mL with a correlation coefficient (r) of ≥0.996. The intra- and inter-day assay precision ranged from 1.66–6.82% and 1.87–6.75%, respectively; and intra- and inter-day assay accuracy was between 89.98–107.56% and 90.54–105.63%, respectively for both the analytes. The lowest quantitation limit for FMN and DZN was 5.0 ng/mL in 0.1 mL of rat plasma. Practical utility of this new LC–MS/MS method was demonstrated in a pharmacokinetic study in rats following intravenous administration of FMN.  相似文献   

5.
A method for Selenocystine and Selenomethionine determination by LC–ES–MS was developed in this work. The mass spectrometer was used in a positive mode and the m/z used for the identification of Selenomethionine and Selenocystine were 198.35 and 337.15, respectively.The selenium species were separated using a LC system. A silica chromatographic column (ZORBAX Eclipse XDB-C8 of 50 mm length and 2.1 mm internal diameter (particle size 3.5 μm)) was used. The separation was realised in isocratic mode, using methanol:water (1:1) with 1% of acetic acid and a flow rate of 200 μL min−1. The developed method was precise (RSD of 4.5% and 3.9% for Selenomethionine and Selenocystine, respectively) and sensible (limit of detection (LOD) 0.06 and 0.99 mg L−1 for selenomethionine and selenocystine, respectively).  相似文献   

6.
A highly efficient, selective and specific method for simultaneous quantitation of triprolidine and pseudoephedrine in human plasma by liquid chromatography–ion trap-tandem mass spectrometry coupled with electro spray ionization (LC–ESI-ion trap-tandem MS) has been validated and successfully applied to a clinical pharmacokinetic study. Both targeted compounds together with the internal standard (gabapentin) were extracted from the plasma by direct protein precipitation. Chromatographic separation was achieved on a C18 ACE® column (50.0 mm × 2.1 mm, 5 μm, Advance Chromatography Technologies, Aberdeen, UK), using an isocratic mobile phase, consisting of water, methanol and formic acid (55:45:0.5, v/v/v), at a flow-rate of 0.3 mL/min. The transition monitored (positive mode) was m/z 279.1  m/z 208.1 for triprolidine, m/z 165.9  m/z 148.0 for pseudoephedrine and m/z 172.0  m/z 154.0 for gabapentin (IS). This method had a chromatographic run time of 5.0 min and a linear calibration curves ranged from 0.2 to 20.0 ng/mL for triprolidine and 5.0–500.0 ng/mL for pseudoephedrine. The within- and between-batch accuracy and precision (expressed as coefficient of variation, %C.V.) evaluated at four quality control levels were within 94.3–106.3% and 1.0–9.6% respectively. The mean recoveries of triprolidine, pseudoephedrine and gabapentin were 93.6, 76.3 and 82.0% respectively. Stability of triprolidine and pseudoephedrine was assessed under different storage conditions. The validated method was successfully employed for the bioequivalence study of triprolidine and pseudoephedrine formulation in twenty six volunteers under fasting conditions.  相似文献   

7.
A rapid, sensitive and specific high performance liquid chromatography–tandem mass spectrometric (HPLC–MS/MS) method has been developed for quantification of mitoxantrone in rat plasma. The analyte and palmatine (internal standard) were extracted from plasma samples with diethyl ether–dichloromethane (3:2, v/v) and separated on a C18 column. The chromatographic separation was achieved within 2.5 min using methanol–10 mM ammonium acetate containing 0.1% acetic acid as the mobile phase at a flow rate of 0.2 mL/min. The method was linear over the range of 0.5–500 ng/mL. The lower limit of quantification (LLOQ) was 0.5 ng/mL. Finally, the method was successfully applied to a pharmacokinetic study of mitoxantrone in rats following intravenous administration.  相似文献   

8.
《Process Biochemistry》2010,45(5):799-804
A preparative high-speed counter-current chromatography (HSCCC) method for isolation and purification of silychristin, silydianin and taxifolin in the co-products of the silybin refined process from the silymarin was successfully established by n-hexane–chloroform–methanol–water (0.5:11:10:6 (0.5 acetic acid), v/v/v/v) as the two-phase solvent system. 146 mg silydianin, 280 mg silychristin and 63 mg taxifolin from 1.463 g co-products sample in one separation were obtained with the purities of 95.1%, 99.3% and 98.2%, respectively, determined by HPLC. The structures of the compounds were identified by means of ESI-MS-MS, TOF-MS, 1H NMR, 13C NMR and 2DNMR-HMBC. Silychristin, silydianin and taxifolin had been separated as standards by HSCCC for the first time. A comparative study between HSCCC and RPLC for separation and isolation of taxifolin, silychristin and silydianin was investigated. The differences between the two preparative chromatographic methods were all discussed. The results demonstrated that HSCCC was a powerful separation tool and could contribute to identifying and quantifying plant ingredients.  相似文献   

9.
A sensitive, specific and selective method has been developed for the simultaneous determination of bisoprolol and hydrochlorothiazide in human plasma. The method employed a state of the art LC–MS/MS operated in the positive and negative ionization switching modes. A simple sample preparation step involving protein precipitation with acetonitrile has been optimized; the analytes and the internal standard moxifloxacin were separated on a Purosphere® STAR C8 column (125 mm × 4 mm, 5 μm). The mobile phase was an ammonium acetate solution (1 mM) with formic acid (0.2%): methanol and acetonitrile (65:17.5:17.5, v/v/v (%)), the flow rate was set at 0.65 mL/min. Bisoprolol and hydrochlorothiazide were ionized using ESI source prior to detection by Multiple Reaction Monitoring (MRM) mode while monitoring at the following transitions: positive m/z 326  116 for bisoprolol, negative m/z 296  269 and m/z 296  205 for hydrochlorothiazide. Linearity was demonstrated over the concentration range 0.10–30.0 (ng/mL) for bisoprolol and 1.00–80.00 ng/mL for hydrochlorothiazide. The limits of detection were 0.100 (ng/mL) for bisoprolol and 1.00 (ng/mL) for hydrochlorothiazide. The validated method was successfully applied to a pharmacokinetic study of 5 mg bisoprolol fumarate with 12.5 mg hydrochlorothiazide tablet in healthy volunteers.  相似文献   

10.
A rapid, specific and sensitive liquid chromatography–electrospray ionization-tandem mass spectrometry method was developed and validated for determination of cymipristone in human plasma. Mifepristone was used as the internal standard (IS). Plasma samples were deproteinized using methanol. The compounds were separated on a ZORBAX SB C18 column (50 mm × 2.1 mm i.d., dp 1.8 μm) with gradient elution at a flow-rate of 0.3 ml/min. The mobile phase consisted of 10 mM ammonium acetate and acetonitrile. The detection was performed on a triple-quadruple tandem mass spectrometer by selective reaction monitoring (SRM) mode via electrospray ionization. Target ions were monitored at [M+H]+ m/z 498  416 and 430  372 in positive electrospray ionization (ESI) mode for cymipristone and IS, respectively. Linearity was established for the range of concentrations 0.5–100 ng/ml with a coefficient correlation (r) of 0.9996. The lower limit of quantification (LLOQ) was identifiable and reproducible at 0.5 ng/ml. The validated method was successfully applied to study the pharmacokinetics of cymipristone in healthy Chinese female subjects.  相似文献   

11.
The ability of IL-6 to signal via both membrane bound and soluble receptors is thought to explain the capacity of this cytokine to act in both the initiation and resolution of acute inflammatory responses. In cystic fibrosis (CF), poorly resolved neutrophillic inflammation of the lungs is a primary cause of morbidity and mortality. Expression of IL-6 has been reported to be low in CF lung secretions, despite ongoing inflammation, but the status of soluble IL-6 receptor (sIL-6R) in these patients is unknown. We hypothesised that sIL-6R may be an important potentiator of IL-6 activity in CF associated lung disease. IL-6, sIL-6R and sgp130 (a natural antagonist of responses mediated by the sIL-6R) were analysed by ELISA and Western blot in bronchoalveolar lavage fluid (BALF) from 28 paediatric CF patients and nine non-CF controls. Total cell counts in CF were four fold higher compared to controls (median: 1.4 × 106 cells/ml v. 0.35 × 106 cells/ml in controls) (p < 0.001) and the infiltrate was dominated by neutrophils which were elevated by 89 fold (0.62 × 106 cells/ml v. 0.007 × 106 cells/ml in controls) (p < 0.001). Other markers of inflammation such as IL-8 and MCP-1 were elevated 17.5 and 3.8 fold respectively (IL-8; median: 1122 pg/ml v. 64 pg/ml in controls, p < 0.01 and MCP-1; median: 692 pg/ml v. 182 pg/ml in controls, p < 0.05). IL-6, although present in 23/32 CF BALF specimens compared to 1/9 controls (p < 0.01), was weakly expressed (median: 50 pg/ml). Expression of sIL-6R and sgp130 in CF was no different to control patients. We tested whether weak expression of all three molecules was due to degradation by CF BALF. Degradative activity was observed in association with BALF elastase activity and could be specifically blocked by serine protease inhibitors. Degradation of sIL-6R by purified serine proteases (elastase, cathepsin G and proteinase 3) was also observed leading to a loss of trans-signalling activity. Interestingly, sIL-6R was protected from proteolysis by interaction with IL-6. Our data identify and define a novel protease mediated deficiency of IL-6 signalling in the CF lung.  相似文献   

12.
The acylation of isoamyl alcohol with acetic anhydride catalyzed by immobilized Candida antarctica lipase B was studied in ionic liquids (ILs) based on quaternary imidazolium cations with alkyl, alkenyl, alkynyl, benzyl, alkoxyl or N-aminopropyl side chains. Among the tested ILs, the highest enzyme activity together with the highest isoamyl acetate yield were obtained in [C7mmim][Tf2N]. No loss of lipase B activity was observed during one-month incubation in this hydrophobic IL without the presence of substrates. Isoamyl acetate synthesis using [C7mmim][Tf2N] as solvent was further studied in a continuously operated miniaturized enzymatic packed bed reactor at various flow rates and temperatures. Up to 92% isoamyl acetate yield could be obtained within 15 min by using 0.5 M acetic anhydride and 1.5 M isoamyl alcohol inlet concentrations at 55 °C, corresponding to the volumetric productivity of 61 mmol l?1 min?1, which to the best of our knowledge is the highest reported so far for this reaction. No decrease in productivity was experienced during the subsequent runs of continuous microbioreactor operation performed within 14 consecutive days. The benefits of reactor miniaturization along with the green solvent application were therefore successfully exploited for the development of a sustainable flavour ester production.  相似文献   

13.
A highly sensitive and selective HPLC–MS/MS method is presented for the quantitative determination of tiloronoxim and its metabolite tilorone in human blood. An aliquot of 200 μl human blood was extracted with a mixture of chloroform/ethyl ether (1/2, v/v), using metoprolol as the internal standard (the IS). Separation was achieved on an Xterra MS C18 column (50 mm × 2.1 mm, 5 μm) with a gradient mobile phase of methanol/water containing 15 mM ammonium bicarbonate (pH 10.5). Detection was performed using positive MRM mode on a TurboIonSpray source. The mass transitions monitored were m/z 426.3  100.0, m/z 411.3  100.0 and m/z 268.3  116.1 for tiloronoxim, tilorone and the IS, respectively. The method was fully validated using total error theory, which is based on β-expectation tolerance intervals and include trueness and intermediate precision. The method was found to be accurate over a concentration range of 1–100 ng/ml for both compounds. The measurement uncertainty based on β-expectation tolerance intervals was assessed at each concentration level of the validation standards. This method was successively applied to a pharmacokinetic study of tiloronoxim in healthy volunteers.  相似文献   

14.
A rapid and sensitive LC–MS/MS method for the determination of vardenafil and its major metabolite, N-desethylvardenafil, in human plasma using sildenafil as an internal standard was developed and validated. The analytes were extracted from 0.25-mL aliquots of human plasma by liquid–liquid extraction, using 1 mL of ethyl acetate. Chromatographic separation was carried on a Luna C18 column (50 mm × 2.0 mm, 3 μm) at 40 °C, with an isocratic mobile phase consisting of 10 mM ammonium acetate (pH 5.0) and acetonitrile (10:90, v/v), a flow rate of 0.2 mL/min, and a total run time of 2 min. Detection and quantification were performed using a mass spectrometer in the selected reaction-monitoring mode with positive electrospray ionization at m/z 489.1  151.2 for vardenafil, m/z 460.9  151.2 for N-desethylvardenafil, and m/z 475.3  100.1 for the internal standard (IS), respectively. This assay was linear over a concentration range of 0.5–200 ng/mL with a lower limit of quantification of 0.5 ng/mL for both vardenafil and N-desethylvardenafil. The coefficient of variation for the assay precision was <13.6%, and the accuracy was >93.1%. This method was successfully applied to a pharmacokinetic study after oral administration of vardenafil 20 mg tablet in Korean healthy male volunteers.  相似文献   

15.
Asymbiotic germination of immature seeds (embryos), and mature seeds and micropropagation of Spathoglottis plicata were described. Effects of three nutrition media namely, Murashige & Skoog (MS); Phytamax (PM); and Phyto-Technology orchid seed sowing medium (P723), two carbon sources such as glucose and sucrose at 2–3% (w/v), two plant growth regulators such as 6-benzylaminopurine (BAP; 0.5–3.0 mg l 1) and α-naphthalene acetic acid (NAA; 0.5–2.0 mg l 1) and peptone (2.0 g l 1) were examined on seed germination, early protocorm development and micropropagation. The maximum germination of mature seeds (95%) was recorded in PM medium supplemented with 2% (w/v) sucrose + 2.0 g l 1 peptone. For germination of embryos P723 medium supplemented with 1.0 mg l 1 BAP proved best. Multiple shoot buds or protocorm-like bodies (PLBs) were produced from stem segments of in vitro raised seedlings. Both direct organogenesis and embryogenesis were observed and the morphogenetic response was initiated by different concentrations and combinations of PGRs. The optimum PGR combination for maximal PLB regeneration was 1.0 mg l 1 NAA + 2.5 mg l 1 BAP, while 1.0 mg l 1 NAA + 1.0 mg l 1 BAP for shoot bud development. Strong and stout root system was induced in half strength PM medium supplemented with 0.5 mg l 1 IAA. The well-rooted plantlets were transferred to pots containing a potting mixture composed of saw dust, coconut coir, humus, and coal pieces at 1:1:1:2 (w/w) with 80% survival in outside environment and flowered after two years of transfer.  相似文献   

16.
To improve the production of biodiesel by enzymatic conversion of triglycerides in cottonseed oil, compatible solutes were added to the solvent-free methanolysis system to prevent competitive methanol inhibition on the immobilized lipase (Novozym® 435). The results indicated that the addition of ectoine increased biodiesel synthesis using a three-step methanol addition process. The concentration of methyl ester (ME) reached a maximum of 95.0% in the presence of 1.1 mmol/l ectoine, an increase of 20.9% compared to that in the absence of ectoine. On the other hand, excess ectoine decreased the ME concentration. Ectoine was also shown to enhance reuse of the immobilized lipase, significantly improving ME concentrations in each recycling test. Total concentrations of ME with added ectoine were about 1.5 times that without ectoine during five recycling tests (molar ratio of cottonseed oil to methanol, 1:4). Enzymatic reaction kinetics showed, in the concentration ranges of 0.8–1.14 mol/l and 0.03–8 mol/l for triglyceride and methanol, respectively, that ectoine had no effect on the initial reaction rates when methanol concentrations were below 0.5 mol/l. When methanol concentration exceeded 0.5 mol/l, the addition of 0.8 mmol/l ectoine increased the initial reaction rates, and the lipase exhibited a lower affinity for methanol and higher affinity for triglyceride (kinetic parameters of KmA increase, KmTG decrease). However, the initial reaction rates decreased significantly when 8 mmol/l ectoine was added, with the lipase having higher affinity for methanol and lower affinity for triglyceride (KmA decrease, KmTG increase). The supplementation of ectoine provided a new method for the purpose of improving yield of biodiesel catalyzed by enzyme.  相似文献   

17.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed to determine the concentration of eptifibatide in human plasma. Following protein precipitation, the analyte was separated on a reversed-phase C18 column. Acetonitrile:5 mM ammonium acetate:acetic acid (30:70:0.1, v/v/v) was used at a flow-rate of 0.5 mL/min with the isocratic mobile phase. An API 4000 tandem mass spectrometer equipped with a Turbo IonSpray ionization source was used as the detector and was operated in the positive ion mode. “Truncated” multiple reaction monitoring using the transition of m/z 832.6  m/z 832.6 and m/z 931.3  m/z 931.3 was performed to quantify eptifibatide and the internal standard (EPM-05), respectively. The method had a lower limit of quantification of 4.61 ng/mL for eptifibatide. The calibration curve was demonstrated to be linear over the concentration range of 4.61 ? 2770 ng/mL. The intra- and inter-day precisions were less than 10.5% for each QC level, and the inter-day relative errors were 2.0%, 5.6%, and 2.8% for 9.22, 184, and 2490 ng/mL, respectively. The validated method was successfully applied to the quantification of eptifibatide concentration in human plasma after intravenous (i.v.) administration of a 270-μg/kg bolus of eptifibatide and i.v. administration of eptifibatide at a constant rate of infusion of 2 μg/(kg min) for 18 h in order to evaluate the pharmacokinetics.  相似文献   

18.
A liquid chromatography–electrospray ionization tandem mass spectrometry (HPLC–ESI-MS/MS) method for the determination of andrographolide in human plasma was established. Dehydroandrographolide was used as the internal standard (I.S.). The plasma samples were deproteinized with methanol and separated on a Hanbon C18 column with a mobile phase of methanol–water (70:30, v/v). HPLC–ESI-MS/MS was performed in the selected ion monitoring (SIM) mode using target ions at [M?H2O–H]?, m/z 331.1 for andrographolide and [M?H]?, m/z 331.1 for the I.S. Calibration curve was linear over the range of 1.0–150.0 ng/mL. The chromatographic separation was achieved in less than 6.5 min. The lower limits of quantification (LLOQ) was 1.0 ng/mL. The intra and inter-run precisions were less than 6.95 and 7.22%, respectively. The method was successfully applied to determine the plasma concentrations of andrographolide in Chinese volunteers.  相似文献   

19.
Enumeration of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus is a priority due to their importance in yogurt production. Capillary electrophoresis (CE) of both bacteria could be achieved in 7.2 min with a resolution of 3.2 in the background electrolyte (BGE) containing 4.5 mM Tris(hydroxymethyl) amminomethane (TRIS)–4.5 mM boric acid–0.1 mM ethylenediamine tetraacetate (EDTA) (TBE) buffer (pH 8.4) and 0.05% (v/v) polyethylene oxide (PEO), using a capillary of 47.5 cm (effective length) × 100 μm i.d., injection of 50 mbar × 3 s followed by ?5 kV × 120 s, a voltage and temperature of 20 kV and 25 °C, respectively. Appropriate amounts of PEO in the BGE, sample preparation (i.e. vortex) and introduction were key factors for their separation. A short hydrodynamic injection followed by applying reversed polarity voltage could compress the bacteria into narrow zones, which were detected as separated single peaks. Method linearity (r2 > 0.99), precision (%RSDs < 9.3%), recovery (%R = 91.7–106.7%) and limit of quantitation (1.0 × 106 colony forming unit per mL (CFU/mL)) were satisfactory. Results from the CE analysis of both bacteria in yogurt were not statistically different from those of the plate count method (P > 0.05). The CE method can be used as an alternative for quantitation of L. delbrueckii subsp. bulgaricus and S. thermophilus in yogurt since it was reliable, simple, cost and labor effective and rapid, allowing the analysis of 3 samples/h (comparing to 2d/sample by plate count method).  相似文献   

20.
《Process Biochemistry》2010,45(9):1517-1522
This study was to examine the effects of polysaccharides from a plant growth-promoting rhizobacterium (PGPR) Bacillus cereus on the growth and tanshinone production of Salvia miltiorrhiza hairy roots. A polysaccharide fraction designated BPS was isolated from the hot water extract of B. cereus cells by ethanol precipitation. BPS applied to the root culture at 100–400 mg l−1 a few days before the stationary growth phase stimulated the tanshinone accumulation of roots by about 7-fold (1.59 mg g−1 versus 0.19 mg g−1) and also notably promoted the root growth (15% increase in biomass). BPS was a polysaccharide–protein complex containing about 27% protein, which is essential for root growth promotion. BPS was separated by ultrafiltration into two molecular weight (MW) fractions, of which the high MW fraction (∼35.8 kDa) with higher protein content (∼31%) promoted the root growth while the lower MW fraction with lower protein content (∼17%) suppressed the growth. The results suggest that the polysaccharide portion of BPS was responsible for stimulating the tanshinone accumulation while the protein portion was responsible for promoting the hairy root growth. Polysaccharides from PGPR are potential sources of active elicitors and growth-promoting agents for plant roots in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号