首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein misfolding due to missense mutations is a common pathogenic mechanism in cystathionine β-synthase (CBS) deficiency. In our previous studies, we successfully expressed, purified, and characterized nine CBS mutant enzymes containing the following patient mutations: P49L, P78R, A114V, R125Q, E176K, R266K, P422L, I435T, and S466L. These purified mutants exhibited full heme saturation, normal tetrameric assembly, and high catalytic activity. In this work, we used several spectroscopic and proteolytic techniques to provide a more thorough insight into the conformation of these mutant enzymes. Far-UV circular dichroism, fluorescence, and second-derivative UV spectroscopy revealed that the spatial arrangement of these CBS mutants is similar to that of the wild type, although the microenvironment of the chromophores may be slightly altered. Using proteolysis with thermolysin under native conditions, we found that the majority of the studied mutants is more susceptible to cleavage, suggesting their increased local flexibility or propensity for local unfolding. Interestingly, the presence of the CBS allosteric activator, S-adenosylmethionine (AdoMet), increased the rate of cleavage of the wild type and the AdoMet-responsive mutants, while the proteolytic rate of the AdoMet-unresponsive mutants was not significantly changed. Pulse proteolysis analysis suggested that the protein structure of the R125Q and E176K mutants is significantly less stable than that of the wild type and the other mutants. Taken together, the proteolytic data shows that the conformation of the pathogenic mutants is altered despite retained catalytic activity and normal tetrameric assembly. This study demonstrates that the proteolytic techniques are useful tools for the assessment of the biochemical penalty of missense mutations in CBS.  相似文献   

2.
By using immunocytochemical method, distribution of cystathionine β-synthase (CBS) was studied in the brain of five crustacean species of the subclass Malacostraca belonging to orders Stomatopoda and Decapoda that have different biological-ecological characteristics. Both similar regularities and differences in distribution of CBS-positive neurons were revealed in homologous brain parts. It is established that differences in the quantitative content of CBS-immunoreactive neurons in the brain of the studied Crustaceans can be due not only to their taxonomic positions, but also to peculiarities of their ecology.  相似文献   

3.
BackgroundRegulatory cystathionine β-synthase (CBS) domains are ubiquitous in proteins, yet their mechanism of regulation remains largely obscure. Inorganic pyrophosphatase which contains regulatory CBS domains as internal inhibitors (CBS-PPase) is activated by ATP and inhibited by AMP and ADP; nucleotide binding to CBS domains and substrate binding to catalytic domains demonstrate positive co-operativity.Methods: Here, we explore the ability of an AMP analogue (cAMP) and four compounds that mimic the constituent parts of the AMP molecule (adenine, adenosine, phosphate, and fructose-1-phosphate) to bind and alter the activity of CBS-PPase from the bacterium Desulfitobacterium hafniense.ResultsAdenine, adenosine and cAMP activated CBS-PPase several-fold whereas fructose-1-phosphate inhibited it. Adenine and adenosine binding to dimeric CBS-PPase exhibited high positive co-operativity and markedly increased substrate binding co-operativity. Phosphate bound to CBS-PPase competitively with respect to a fluorescent AMP analogue.ConclusionsProtein interactions with the adenine moiety of AMP induce partial release of the internal inhibition and determine nucleotide-binding co-operativity, whereas interactions with the phosphate group potentiate the internal inhibition and decrease active-site co-operativity. The ribose moiety appears to enhance the activation effect of adenine and suppress its contribution to both types of co-operativity.General significanceOur findings demonstrate for the first time that regulation of a CBS-protein (inhibition or activation) is determined by a balance of its interactions with different chemical groups of the nucleotide and can be reversed by their modification. Differential regulation by nucleotides is not uncommon among CBS-proteins, and our findings may thus have a wider significance.  相似文献   

4.

Background

The cystathionine β-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes.

Methodology/Principal Findings

Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line.

Conclusion/Significance

We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.  相似文献   

5.
6.
Cystathionine β-synthase (CBS) domains discovered 20 years ago can bind different adenosine derivatives (AMP, ADP, ATP, S-adenosylmethionine, NAD, diadenosine polyphosphates) and thus regulate the activities of numerous proteins. Mutations in CBS domains of enzymes and membrane transporters are associated with several hereditary diseases. The regulatory unit is a quartet of CBS domains that belong to one or two polypeptides and usually form a conserved disk-like structure. CBS domains function as “internal inhibitors” in enzymes, and their bound ligands either amplify or attenuate the inhibitory effect. Recent studies have opened a way to understanding the structural basis of enzyme regulation via CBS domains and widened the list of their bound ligands.  相似文献   

7.
Human cystathionine β-synthase (CBS), a pivotal enzyme in the metabolism of homocysteine, is a pyridoxal-5′-phosphate-dependent enzyme that also contains heme, a second cofactor whose function is still unclear. One strategy for elucidation of heme function is its replacement with different metalloporphyrins or with porphyrins containing different substituent groups. This paper describes a novel expression approach and purification of cobalt CBS (CoCBS), which results in a high yield of fully active, high purity enzyme, in which heme is substituted by Co-protoporphyrin IX (CoPPIX). Metal content analysis showed that the enzyme contained 92% cobalt and 8% iron. CoCBS was indistinguishable from wild-type FeCBS in its activity, tetrameric oligomerization, PLP saturation and responsiveness to the allosteric activator, S-adenosyl-l-methionine. The observed biochemical and spectral characteristics of CoCBS provide further support for the suggestion that heme is involved in structural integrity and folding of this unusual enzyme.  相似文献   

8.
Iranian population with an Indo-European origin is one of the oldest populations in the world. Historical evidence suggests the close similarity in the origin of Iranian, European and north Indian population. However, there are few anthropological and genetic evidences on this subject. This study, which is the first report from Iran, was performed to investigate the genetic origin of Iranian population using a polymorphism in Cystathionine beta synthase (CBS) gene known as 844INS68bp in this respect, genomic DNA was extracted from the whole blood of 480 healthy normal blood donors referred to Fars Blood Transfusion Center, using a salting out method. The fragment containing 844INS68bp was amplified, the normal fragment was 174 bp and the fragment containing the insertion was 242 bp in length. Results indicated that 418 (87.08%) out of 480 individuals had a normal (N/N) genotype, 59 (12.29%) individuals were heterozygote (N/I) and 3 (0.63%) had homozygote a mutated genotype (I/I). The total frequency of 844INS68bp allele was found 6.8% which is similar to with the reported in White Caucasians. Comparison of the genotype of this study with the polymorphism in other populations revealed that Southern Iranian population has a great similarity with other Caucasians populations’ especially South Italy and North America while differed from East Asian and African populations. These results are in agreement with the result of other studied polymorphisms. Therefore, despite the great admixture of Iranian population with the neighboring non-Caucasian populations during the time, Iranian population still share a genetic background with other Caucasian populations.  相似文献   

9.
The single cystathionine β-synthase (CBS) pair proteins from Arabidopsis thaliana have been identified as being a redox regulator of the thioredoxin (Trx) system. CBSX1 and CBSX2, which are two of the six Arabidopsis cystathione β-synthase domain-containing proteins that contain only a single CBS pair, have close sequence similarity. Recently, the crystal structure of CBSX2 was determined and a significant portion of the internal region was disordered. In this study, crystal structures of full-length CBSX1 and the internal loop deleted (Δloop) form are reported at resolutions of 2.4 and 2.2 Å, respectively. The structures of CBSX1 show that they form anti-parallel dimers along their central twofold axis and have a unique ~155° bend along the side. This is different from the angle of CBSX2, which is suggestive of the flexible nature of the relative angle between the monomers. The biochemical data that were obtained using the deletion as well as point mutants of CBSX1 confirmed the importance of AMP-ligand binding in terms of enhancing Trx activity.  相似文献   

10.
Human CBS is a PLP-dependent enzyme that clears homocysteine, gates the flow of sulfur into glutathione, and contributes to the biogenesis of H(2)S. The presence of a heme cofactor in CBS is enigmatic, and its conversion from the ferric- to ferrous-CO state inhibits enzyme activity. The low heme redox potential (-350 mV) has raised questions about the feasibility of the ferrous-CO state forming under physiological conditions. Herein, we provide the first evidence of reversible inhibition of CBS by CO in the presence of a human flavoprotein and NADPH. These data provide a mechanism for cross talk between two gas-signaling systems, CO and H(2)S, via heme-mediated allosteric regulation of CBS.  相似文献   

11.
You XJ  Xu C  Lu JQ  Zhu XY  Gao L  Cui XR  Li Y  Gu H  Ni X 《PloS one》2011,6(8):e23788

Background

Human uterus undergoes distinct molecular and functional changes during pregnancy and parturition. Hydrogen sulfide (H2S) has recently been shown to play a key role in the control of smooth muscle tension. The role of endogenous H2S produced locally in the control of uterine contractility during labour is unknown.

Methodology/Principal Findings

Human myometrium biopsies were obtained from pregnant women undergoing cesarean section at term. Immunohistochemistry analysis showed that cystathionine-γ-lyase (CSE) and cystathionine-β-synthetase (CBS), the principle enzymes responsible for H2S generation, were mainly localized to smooth muscle cells of human pregnant myometrium. The mRNA and protein expression of CBS as well as H2S production rate were down-regulated in labouring tissues compared to nonlabouring tissues. Cumulative administration of L-cysteine (10−7–10−2 mol/L), a precursor of H2S, caused a dose-dependent decrease in the amplitude of spontaneous contractions in nonlabouring and labouring myometrium strips. L-cysteine at high concentration (10−3 mol/L) increased the frequency of spontaneous contractions and induced tonic contraction. These effects of L-cysteine were blocked by the inhibitors of CBS and CSE. Pre-treatment of myometrium strips with glibenclamide, an inhibitor of ATP-sensitive potassium (KATP) channels, abolished the inhibitory effect of L-cysteine on spontaneous contraction amplitude. The effects of L-cysteine on the amplitude of spontaneous contractions and baseline muscle tone were less potent in labouring tissues than that in nonlabouring strips.

Conclusion/Significance

H2S generated by CSE and CBS locally exerts dual effects on the contractility of pregnant myometrium. Expression of H2S synthetic enzymes is down-regulated during labour, suggesting that H2S is one of the factors involved in the transition of pregnant uterus from quiescence to contractile state after onset of parturition.  相似文献   

12.
Summary Among several established mouse, rat, and Chinese hamster cell lines that were screened for cystathionine -synthase (CBS) activity, mouse 3T3 and Chinese hamster Don fibroblasts were found to contain no detectable activity. Somatic cell hybrids between human fibroblasts KG-7 with normal CBS activity and Don/a23TK- cells (series XXI) were examined for CBS activity and for human chromosome content. Only chromosome 21 cosegregated with CBS activity. Because the activities measured could represent either Chinese hamster or human gene products, we have prepared a new series of hybrids between Don/a23TK- cells and mutant human fibroblasts from a patient with homocystinuria due to deficiency of functional CBS mRNA. None of these (series XXV) hybrids contained detectable CBS activity, although collectively all human chromosomes were represented. Our results suggest that the human gene for CBS, called CBS, and thus for the most common form of homocystinuria, is located on chromosome 21.  相似文献   

13.
Direct sequencing of the coding region of the cystathionine -synthase (CBS) gene in two homocystinuric patients revealed the presence of two novel missense mutations. The first mutation, a 1111G A transition, resulted in the substitution of the evolutionary conserved valine-371 by a methionine residue (V371M) and created a new NlaIII restriction site. The second mutation, a GA transition at base-pair 494, resulted in an amino acid change from cysteine to tyrosine (C165Y) and abolished a BsoFI restriction site. Both mutations were found in a compound heterozygous state with the previously described 833T C transition.  相似文献   

14.
Using immunohistochemistry, we examined the distribution of the hydrogen sulfide (H2S) synthesizing enzymes cystathionine β-synthase (CBS) and cystathionine Γ-lyase (CSE) in tissues of the nemertean Cerebratulus marginatus Renier, 1804 (Heteronemertea: Lineidae). The expression of both CBS and CSE was found in the body wall and in the receptor cells of the canals of the cerebral organs; the expression of CBS was found in the foregut and intestine; and CSE was found in the brain, lateral nerve cords, and cerebral organs. The peculiarities of the distribution and the possible functional role of H2S-synthesizing elements in nemerteans are discussed.  相似文献   

15.
To determine the l-methionine (l-Met) concentration in an extract from dried blood spots (DBSs) for newborn mass screening for homocystinuria (HCU) due to cystathionine β-synthase (CBS) deficiency, a new fluorometric microplate assay using a methionine-specific dehydrogenase (MetDH) and the diaphorase/reazusrin system was established. We created by directed mutagenesis an NAD(+)-dependent MetDH from phenylalanine dehydrogenase (PheDH) showing higher substrate specificity toward l-Met than l-phenylalanine (l-Phe). However, it also exhibited notable activity for branched-chain amino acids (BCAAs). BCAAs in blood clearly interfered with the determination of l-Met in the DBS specimens using a single application of MetDH. To measure l-Met selectively, we used a branched-chain amino acid transaminase (BCAT) to eliminate the BCAAs in the specimens and screened for a BCAT with low activity toward l-Met. In microplate assays using MetDH, pretreatment of specimens with the BCAT from Lactobacillus delbrueckii subsp. bulgaricus coupled with l-glutamate oxidase minimized the effects of BCAAs, and l-Met concentrations were determined with high accuracy even at elevated BCAA concentrations. This enzymatic end-point assay is suitable for determining l-Met concentrations in DBSs for neonatal screening for HCU due to CBS deficiency.  相似文献   

16.
Human cystathionine β-synthase (hCBS) is a key enzyme of sulfur amino acid metabolism, controlling the commitment of homocysteine to the transsulfuration pathway and antioxidant defense. Mutations in hCBS cause inherited homocystinuria (HCU), a rare inborn error of metabolism characterized by accumulation of toxic homocysteine in blood and urine. hCBS is a complex multidomain and oligomeric protein whose activity and stability are independently regulated by the binding of S-adenosyl-methionine (SAM) to two different types of sites at its C-terminal regulatory domain. Here we study the role of surface electrostatics on the complex regulation and stability of hCBS using biophysical and biochemical procedures. We show that the kinetic stability of the catalytic and regulatory domains is significantly affected by the modulation of surface electrostatics through noticeable structural and energetic changes along their denaturation pathways. We also show that surface electrostatics strongly affect SAM binding properties to those sites responsible for either enzyme activation or kinetic stabilization. Our results provide new insight into the regulation of hCBS activity and stability in vivo with implications for understanding HCU as a conformational disease. We also lend experimental support to the role of electrostatic interactions in the recently proposed binding modes of SAM leading to hCBS activation and kinetic stabilization.  相似文献   

17.
Homocysteine (Hcy), a cardiovascular and neurovascular disease risk factor, is converted to hydrogen sulfide (H(2)S) through the transsulfuration pathway. H(2)S has attracted considerable attention in recent years for many positive effects on vascular health and homeostasis. Cystathionine β-synthase (CBS) is the first, and rate-limiting, enzyme in the transsulfuration pathway. Mutations in the CBS gene decrease enzymatic activity, which increases the plasma Hcy concentration, a condition called hyperhomocysteinemia (HHcy). Animal models of CBS deficiency have provided invaluable insights into the pathological effects of transsulfuration impairment and of both mild and severe HHcy. However, studies have also highlighted the complexity of HHcy and the need to explore the specific details of Hcy metabolism in addition to Hcy levels per se. There has been a relative paucity of work addressing the dysfunctional H(2)S production in CBS deficiency that may contribute to, or even create, HHcy-associated pathologies. Experiments using CBS knockout mice, both homozygous (-/-) and heterozygous (+/-), have provided 15 years of new knowledge and are the focus of this review. These murine models present the opportunity to study a specific mechanism for HHcy that matches one of the etiologies in many human patients. Therefore, the goal of this review was to integrate and highlight the critical information gained thus far from models of CBS deficiency and draw attention to critical gaps in knowledge, with particular emphasis on the modulation of H(2)S metabolism. We include findings from human and animal studies to identify important opportunities for future investigation that should be aimed at generating new basic and clinical understanding of the role of CBS and transsulfuration in cardiovascular and neurovascular disease.  相似文献   

18.
Yoo KS  Ok SH  Jeong BC  Jung KW  Cui MH  Hyoung S  Lee MR  Song HK  Shin JS 《The Plant cell》2011,23(10):3577-3594
Plant thioredoxins (Trxs) participate in two redox systems found in different cellular compartments: the NADP-Trx system (NTS) in the cytosol and mitochondria and the ferredoxin-Trx system (FTS) in the chloroplast, where they function as redox regulators by regulating the activity of various target enzymes. The identities of the master regulators that maintain cellular homeostasis and modulate timed development through redox regulating systems have remained completely unknown. Here, we show that proteins consisting of a single cystathionine β-synthase (CBS) domain pair stabilize cellular redox homeostasis and modulate plant development via regulation of Trx systems by sensing changes in adenosine-containing ligands. We identified two CBS domain-containing proteins in Arabidopsis thaliana, CBSX1 and CBSX2, which are localized to the chloroplast, where they activate all four Trxs in the FTS. CBSX3 was found to regulate mitochondrial Trx members in the NTS. CBSX1 directly regulates Trxs and thereby controls H(2)O(2) levels and regulates lignin polymerization in the anther endothecium. It also affects plant growth by regulating photosynthesis-related [corrected] enzymes, such as malate dehydrogenase, via homeostatic regulation of Trxs. Based on our findings, we suggest that the CBSX proteins (or a CBS pair) are ubiquitous redox regulators that regulate Trxs in the FTS and NTS to modulate development and maintain homeostasis under conditions that are threatening to the cell.  相似文献   

19.
The human cystathionine β-synthase (CBS) gene spans in excess of 30 kb and consists of 19 exons, with three different 5′ untranslated regions including three different exons 1 (exons 1 a, b, and c). Exon la and 1b are 390 bp apart from each other and are linked to exon 2 in cDNA « a » and cDNA « b ». Exon 1c, which linked to exon 5 in cDNA « c », is 7 kb apart from exon 1b. All splice sites conform to the GT/AG rule, including those from exon la or 1b to exon 2 and from exon 1c to exon 5. Upstream of exons la and 1b, we found two putative promoter sequences with high C + G nucleotide content, one CAAT box at —70 nucleotides (for exon lb), no TATA box, several Sp1 binding regulatory consensus sequences, and some other regulatory sequences. Human adult and fetal Northern blots hybridized with total cDNA containing exon 1b, or specific probes from exons 1 (b and c) showed mRNAs of 2.5 kb, 2.7 kb, and 3.7 kb. These results suggest that the mRNAs containing the different exons 1 are under the control of different promoters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号