首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reversed-phase liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method was developed and validated for simultaneous determination of ABT-888 and its major metabolite (M8) in human plasma. Sample preparation involved a liquid–liquid extraction by the addition of 0.25 ml of plasma with 10 μl of 1 M NaOH and 1.0 ml ethyl acetate containing 50 ng/ml of the internal standard zileuton. The analytes were separated on a Waters XBridge C18 column using a gradient mobile phase consisting of methanol/water containing 0.45% formic acid at the flow rate of 0.2 ml/min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the ABT-888 and M8 concentration ranges of 1–2000 ng/ml in human plasma. The lower limits of quantitation (LLOQ) were 1 ng/ml for both ABT-888 and M8 in human plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical method (<15%). This method was successfully employed to characterize the plasma concentration–time profile of ABT-888 after its oral administration in cancer patients.  相似文献   

2.
A reverse-phase liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method was developed and validated for determination of aminoflavone (AF) in human plasma. Sample preparation involved a liquid–liquid extraction by the addition of 0.25 mL of plasma with 1.0 mL ethyl acetate containing 50 ng/mL of the internal standard zileuton. The analytes were separated on a Waters X-Terra? MS C18 column using a mobile phase consisting of methanol/water containing 0.45% formic acid (70:30, v/v) and isocratic flow at 0.2 mL/min for 6 min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the AF concentration range of 5–2000 ng/mL in human plasma. The lower limit of quantitation (LLOQ) was 5 ng/mL for AF in human plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical method (<15%). This method was successfully applied to characterize AF plasma concentration-time profile in the cancer patients in a phase I trial.  相似文献   

3.
A simple, sensitive and specific high-performance liquid chromatography method has been developed for the determination of nortriptyline (NT) in plasma samples. The assay involved derivatization with 9H-fluoren-9-ylmethyl chloroformate (Fmoc-Cl) and isocratic reversed-phase (C18) chromatography with fluorescence detection. The developed method required only 100 μl of plasma sample, deproteinized and derivatized in one step. Calibration curves were lineal over the concentration range of 5–5000 ng/ml. The derivatization reaction was performed at room temperature in 20 min and the obtained NT derivative was stable for at least 48 h at room temperature. The within-day and between-day relative standard deviation was below 8%. The limit of detection (LOD) was 2 ng/ml, and the lower limit of quantification (LLOQ) was established at 10 ng/ml. The method was applied on plasma collected from rats, at different time intervals, after intravenous administration of 0.5 mg of NT.  相似文献   

4.
Remoxipride is a selective dopamine D2 receptor antagonist, and useful as a model compound in mechanism-based pharmacological investigations. To that end, studies in small animals with serial sampling over time are needed. For these small volume samples currently no suitable analytical methods are available. We propose analytical methods for the detection of low concentrations remoxipride in small sample volumes of plasma, brain homogenate, and brain microdialysate, using online solid phase extraction with liquid chromatography–tandem mass spectrometry. Method development, optimization and validation are described in terms of calibration curves, extraction yield, lower limit of quantification (LLOQ), precision, accuracy, inter-day- and intra-day variability. The 20 μl plasma samples showed an extraction yield of 76%, with a LLOQ of 0.5 ng/ml. For 0.6 ml brain homogenate samples the extraction yield was 45%, with a LLOQ of 1.8 ng/ml. The 20 μl brain microdialysate samples, without pre-treatment, had a LLOQ of 0.25 ng/ml. The precision and accuracy were well within the acceptable 15% range. Considering the small sample volumes, the high sensitivity and good reproducibility, the analytical methods are suitable for analyzing small sample volumes with low remoxipride concentrations.  相似文献   

5.
A novel precolumn derivatization reversed-phase high-performance liquid chromatography (RP-HPLC) method with UV–vis detection for the quantitative determination of total concentration of asiatic acid (AA) in beagle dog plasma is described. AA was extracted with n-hexane-dichloromethane-2-propanol (20:10:1, v/v/v) from plasma, which had been hydrolyzed by acid and derivatized with p-Toluidine. Chromatographic separation was achieved on a C18 column using gradient elution in a water–methanol system. Detection was set at UV wavelength of 248 nm. A calibration curve ranging from 0.01 to 1.5 μg/mL was shown to be linear, and the lower limit of quantification (LLOQ) was 0.01 μg/mL. The intra- and inter-day precisions which were determined by three different concentrations (0.05, 0.2 and 0.8 μg/mL) ranged from 4.4% to 13.1% and 4.6% to 14.2%, respectively. Mean extraction recoveries were no less than 65% for AA and ursolic acid (IS). Plasma samples containing asiatic acid were stable for 30 days at ?20 °C. The method was successfully applied to a pharmacokinetic study in beagle dogs after oral administration of Centella asiatica extract, and the main pharmacokinetic parameters obtained were: T1/2, 4.29 h; Tmax, 2.70 h; Cmax, 0.74 μg/mL; AUC0–t and AUC0–∞, 3.74 and 3.82 μg h/mL, respectively.  相似文献   

6.
A rapid high-performance liquid chromatography–mass spectrometry (HPLC–MS) method was developed and validated for simultaneous quantification of 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol in rat plasma after oral administration of ginger oleoresin. Plasma samples extracted with a liquid–liquid extraction procedure were separated on an Agilent Zorbax StableBond-C18 column (4.6 mm × 50 mm, 1.8 μm) and detected by MS with electrospray ionization interface in positive selective ion monitoring (SIM) mode. Calibration curves (1/x2 weighted) offered satisfactory linearity (r2 > 0.995) in a wide linear range (0.0104–13.0 μg/mL for 6-gingerol, 0.00357–4.46 μg/mL for 8-gingerol, 0.00920–11.5 μg/mL for 10-gingerol and 0.00738–9.22 μg/mL for 6-shogaol). The lower limit of quantification (LLOQ) was in a range of 3.57–10.4 ng/mL. The analytes and internal standard can be baseline separated within 6 min. Inter- and intra-day assay variation was less than 15%. This developed method was successfully applied to pharmacokinetic studies of ginger oleoresin after oral administration to rats. Glucuronide of 6-gingerol was determined after β-glucuronidase hydrolysis for more information, and the intestinal glucuronidation was further confirmed by comparison of plasma samples of hepatic portal vein and femoral vein.  相似文献   

7.
A simple and sensitive high-performance liquid chromatography with ultraviolet detection (HPLC-UV) method has been developed and validated for simultaneous quantification of five local anesthetics in human plasma: procaine, lidocaine, ropivacaine, tetracaine and bupivacaine. In an ice-water bath, 500 μL plasma sample, containing 100 μg/mL neostigmine methylsulfate as anticholinesterase, was spiked with carbamazepine as internal standard and alkalized by sodium hydroxide. Liquid–liquid extraction with ethyl ether was used for plasma sample preparation. The chromatographic separation was achieved on a Kromosil ODS C18 column with a mobile phase consisting of 30 mM potassium dihydrogen phosphate buffer (0.16% triethylamine, pH adjusted to 4.9 with phosphoric acid) and acetonitrile (63/37, v/v). The detection was performed simultaneously at wavelengths of 210 and 290 nm. The chromatographic analysis time was 13 min per sample. The calibration curves of all five analytes were linear between 0.05 and 5.0 μg/mL (r2  0.998). Precision ranged from 1.4% to 7.9% and accuracy was between 91.7% and 106.5%. The validated method is applicable for simultaneous determination of procaine, lidocaine, ropivacaine, tetracaine and bupivacaine for therapeutic drug monitoring and pharmacokinetic study.  相似文献   

8.
In recent animal studies, several novel oxime compounds that are better than 2-PAM as antidotes against selected organophosphate (OP) nerve agents have been identified. The purpose of this study was to develop and validate a liquid chromatographic–mass spectrometric (LC–MS) method for analysis of the bis-pyridinium oxime ICD-585 (1-(2-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium)-propane) in plasma and to establish the utility of the method in a guinea pig model. Calibration curves were prepared using ICD-585-spiked plasma at concentrations from 0.156 to 10 μg/ml. Curves were run over a 1-month time frame and a total of 13 (n = 13) were generated. The lower limit of quantification (LLOQ) was determined to be 0.216 μg/ml. Intra- and inter-day variability was assessed by studying precision and accuracy. For intra-day studies, data from the precision determinations indicated that the % CV's ranged from 4.28 to 14.98%. The % error in the accuracy assessments ranged from ?8.73 to 4.61%. For inter-day studies, precision data ranged from 3.53 to 13.20%. The % error in the accuracy assessments ranged from 0.39 to 13.77%. Room temperature, freeze–thaw and autosampler stability was also examined. For all 3 stability studies, the compound remained within ±15% of the initial analysis. Application of the method was demonstrated by analyzing samples from guinea pigs challenged with sarin (GB) or cyclosarin (GF) (1× LD50) followed with intramuscular ICD-585 (58 μM/kg, 21.8 mg/kg). At 55 min after oxime administration, mean (±SD) plasma concentrations were 15.98 (±4.88) μg/ml and 14.57 (±3.70) μg/ml in GB- and GF-exposed animals, respectively. In summary, studies have been carried out to verify the sensitivity, precision and accuracy of the assay as well as the stability of the analyte under various conditions. The method has been demonstrated to be applicable to the analysis of plasma from nerve agent-exposed guinea pigs.  相似文献   

9.
We present an implementation of a method we previously reported allowing the newer antiepileptic drugs (AEDs) rufinamide (RFN) and zonisamide (ZNS) to be simultaneously determined with lamotrigine (LTG), oxcarbazepine's (OXC) main active metabolite monohydroxycarbamazepine (MHD) and felbamate (FBM) in plasma of patients with epilepsy using high performance liquid chromatography (HPLC) with UV detection. Plasma samples (250 μL) were deproteinized by 1 mL acetonitrile spiked with citalopram as internal standard (I.S.). HPLC analysis was carried out on a Synergi 4 μm Hydro-RP, 250 mm × 4.6 mm I.D. column. The mobile phase was a mixture of potassium dihydrogen phosphate buffer (50 mM, pH 4.5), acetonitrile and methanol (65:26.2:8.8, v/v/v) at an isocratic flow rate of 0.8 mL/min. The UV detector was set at 210 nm. The chromatographic run lasted 19 min. Commonly coprescribed AEDs did not interfere with the assay. Calibration curves were linear for both AEDs over a range of 2–40 μg/mL for RFN and 2–80 μg/mL for ZNS. The limit of quantitation was 2 μg/mL for both analytes and the absolute recovery ranged from 97% to 103% for RFN, ZNS and the I.S. Intra- and interassay precision and accuracy were lower than 10% at all tested concentrations. The present study describes the first simple and validated method for RFN determination in plasma of patients with epilepsy. By grouping different new AEDs in the same assay the method can be advantageous for therapeutic drug monitoring (TDM).  相似文献   

10.
A sensitive and specific method using ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was developed for the determination of levetiracetam (LEV) in plasma of neonates. A plasma aliquot of 50 μl was deproteinized by addition of 500 μl methanol which contained 5 μg/ml UCB 17025 as an internal standard. After centrifugation, 50 μl of supernatant was diluted with 1000 μl of 0.1% formic acid–10 mM ammonium formate in water (pH 3.5) (mobile phase solution A) and 2 μl was injected onto the UPLC-system. Compounds were separated on a Acquity UPLC BEH C18 2.1 mm × 100 mm column using gradient elution with mobile phase solution A and 0.1% formic acid in methanol (mobile phase solution B) with a flow rate of 0.4 ml/min and a total runtime of 4.0 min. LEV and the internal standard were detected using positive ion electrospray ionization followed by tandem mass spectrometry (ESI-MS/MS). The assay allowed quantification of LEV plasma concentrations in the range from 0.5 μg/ml to 150 μg/ml. Inter-assay inaccuracy was within ±2.7% and inter-assay precision was less than 4.5%. Matrix effects were minor: the recovery of LEV was between 97.7% and 100%. The developed method required minimal sample preparation and less plasma sample volume compared to earlier published LC–MS/MS methods. The method was successfully applied in a clinical pharmacokinetic study in which neonates received intravenous administrations of LEV for the treatment of neonatal seizures.  相似文献   

11.
This study aimed to investigate effect of erythrocyte suspension (ES) transfusion on Cu, Zn, and Fe levels. It was conducted on 53 premature infants who were admitted to Hacettepe Hospital and received EST for first time. Blood samples were drawn before and 96 h after ES transfusion to determine Cu, Zn, and Fe levels in plasma and/or erythrocytes. The mean plasma Cu levels were 99 ± 3 μg/dl and 113 ± 3 μg/dl; Zn levels were 105 ± 2 μg/dl and 115 ± 23 μg/dl; mean plasma Fe level was 58.1 ± 19.4 and 75.2 ± 25.4 μg/dl and mean erythrocyte Fe level was 4182 ± 2314 μg/ml and 7009 ± 5228 μg/ml, before and after ES transfusion. The differences between before and after ES transfusion in Cu, Zn and Fe levels were significant. Correlation between plasma and erythrocyte Fe levels was significant both before and after ES transfusion. Though Fe overload is a major cause of morbidity/mortality after ES transfusion, alterations in trace elements should also be considered when transfusing blood to infants and children.  相似文献   

12.
13.
A rapid and selective method for simultaneous determination of cyclophosphamide and its metabolite carboxyethylphosphoramide mustard (CEPM) was developed using online sample preparation and separation with tandem mass spectrometric detection. Diluted plasma was injected onto an extraction column (Cyclone MAX 0.5 mm × 50 mm, >30 μm), the sample matrix was washed with an aqueous solution, and retained analytes were transferred to an analytical column (Gemini 3 μm C18 110A, 100 mm × 2.0 mm) using a gradient mobile phase prior to detection by MS/MS. Analytes were detected in an API-3000 LC-MS/MS system using positive multiple-reaction monitoring mode (m/z 261/140 and 293/221 for CTX and CEPM, respectively). Online extraction recoveries were 76% and 72% for cyclophosphamide and CEPM. Within-day and between-day variabilities were <3.0%, and accuracies were between ?6.9% and 5.2%. This method has been used to measure plasma cyclophosphamide and CEPM concentrations in an ongoing Phase II study in children with newly diagnosed medulloblastoma.  相似文献   

14.
In the present in vitro study, a comet assay was used to determine whether 1.8-GHz radiofrequency radiation (RFR, SAR of 2 W/kg) can influence DNA repair in human B-cell lymphoblastoid cells exposed to doxorubicin (DOX) at the doses of 0 μg/ml, 0.05 μg/ml, 0.075 μg/ml, 0.10 μg/ml, 0.15 μg/ml and 0.20 μg/ml. The combinative exposures to RFR with DOX were divided into five categories. DNA damage was detected at 0 h, 6 h, 12 h, 18 h and 24 h after exposure to DOX via the comet assay, and the percent of DNA in the tail (% tail DNA) served as the indicator of DNA damage. The results demonstrated that (1) RFR could not directly induce DNA damage of human B-cell lymphoblastoid cells; (2) DOX could significantly induce DNA damage of human B-cell lymphoblastoid cells with the dose–effect relationship, and there were special repair characteristics of DNA damage induced by DOX; (3) E–E–E type (exposure to RFR for 2 h, then simultaneous exposure to RFR and DOX, and exposure to RFR for 6 h, 12 h, 18 h and 24 h after exposure to DOX) combinative exposure could obviously influence DNA repair at 6 h and 12 h after exposure to DOX for four DOX doses (0.075 μg/ml, 0.10 μg/ml, 0.15 μg/ml and 0.20 μg/ml) in human B-cell lymphoblastoid cells.  相似文献   

15.
A rapid method to determine fexofenadine concentrations in human plasma using protein precipitation in 96-well plates and liquid chromatography–tandem mass spectrometry was validated. Plasma proteins were precipitated with acetonitrile containing the internal standard fexofenadine-d6, mixed briefly, and then filtered into a collection plate. The resulting filtrate was diluted and injected onto a Phenomenex Gemini C18 (50 mm × 2.0 mm, 5 μm) analytical column. The mobile phase consisted of 0.1% formic acid, 5 mM ammonium acetate in deionized water and methanol (35:65, v/v). The flow rate was 0.2 ml/min and the total run time was 2 min. Detection of the analytes was achieved using positive ion electrospray ionization and high resolution multiple reaction monitoring mode (H-SRM). The linear standard curve ranged from 1 to 500 ng/ml and the precision and accuracy (intra- and inter-run) were within 4.3% and 8.0%, respectively. The method has been applied successfully to determine fexofenadine concentrations in human plasma samples obtained from subjects administered a single oral dose of fexofenadine. The method is rapid, sensitive, selective and directly applicable to human pharmacokinetic studies involving fexofenadine.  相似文献   

16.
Pyrrole (Py)–imidazole (Im) polyamides synthesized by combining N-methylpyrrole and N-methylimidazole amino acids have been identified as novel candidates for gene therapy. In this study, a sensitive method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) with an electrospray ionization (ESI) source was developed and validated for the determination and quantification of Py–Im polyamide in rat plasma. Py–Im polyamide was extracted from rat plasma by solid-phase extraction (SPE) using a Waters Oasis® HLB cartridge. Separation was achieved on an ACQUITY UPLC HSS T3 (1.8 μm, 2.1 × 50 mm) column by gradient elution using acetonitrile:distilled water:acetic acid (5:95:0.1, v/v/v) and acetonitrile:distilled water:acetic acid (95:5:0.1, v/v/v). The method was validated over the range of 10–1000 ng/mL and the lower limit of quantification (LLOQ) was 10 ng/mL. This method was successfully applied to the investigation of the pharmacokinetics of Py–Im polyamide after intravenous administration.  相似文献   

17.
A high-performance liquid chromatographic method with fluorescence detection for the determination of itopride in human plasma is reported. The sample preparation was based on liquid–liquid extraction of itopride from plasma with t-butylmethylether and dichloromethane (70:30, v/v) mixture followed by a back extraction of the analyte to the phosphate buffer (pH 3.2). Liquid chromatography was performed on an octadecylsilica column (55 mm × 4 mm, 3 μm particles), the mobile phase consisted of acetonitrile–triethylamine–15 mM dihydrogenpotassium phosphate (14.5:0.5:85, v/v/v), pH of the mobile phase was adjusted to 4.8. The run time was 3 min. The fluorimetric detector was operated at 250/342 nm (excitation/emission wavelength). Naratriptan was used as the internal standard. The limit of quantitation was 9.5 ng/ml using 0.5 ml of plasma. The method precision and inaccuracy were less than 8%. The assay was applied to the analysis of samples from a bioequivalence study.  相似文献   

18.
With the expanded use of the combination of artesunate (AS) and amodiaquine (AQ) for the treatment of falciparum malaria and the abundance of products on the market, comes the need for rapid and reliable bioanalytical methods for the determination of the parent compounds and their metabolites. While the existing methods were developed for the determination of either AS or AQ in biological fluids, the current validated method allows simultaneous extraction and determination of AS and AQ in human plasma. Extraction is carried out on Supelclean LC-18 extraction cartridges where AS, its metabolite dihydroartemisinin (DHA) and the internal standard artemisinin (QHS) are separated from AQ, its metabolite desethylamodiaquine (DeAQ) and the internal standard, an isobutyl analogue of desethylamodiaquine (IB-DeAQ). AS, DHA and QHS are then analysed using Hypersil C4 column with acetonitrile–acetic acid (0.05 M adjusted to pH 5.2 with 1.00 M NaOH) (42:58, v/v) as mobile phase at flow rate 1.50 ml/min. The analytes are detected with an electrochemical detector operating in the reductive mode. Chromatography of AQ, DeAQ and IB-DeAQ is carried out on an Inertsil C4 column with acetonitrile–KH2PO4 (pH 4.0, 0.05 M) (11:89, v/v) as mobile phase at flow rate 1.00 ml/min. The analytes are detected by an electrochemical detector operating in the oxidative mode. The recoveries of AS, DHA, AQ and DeAQ vary between 79.1% and 104.0% over the concentration range of 50–1400 ng/ml plasma. The accuracies of the determination of all the analytes are 96.8–103.9%, while the variation for within-day and day-to-day analysis are <15%. The lower limit of quantification for all the analytes is 20 ng/ml and limit of detection is 8 ng/ml. The method is sensitive, selective, accurate, reproducible and suited particularly for pharmacokinetic study of AS–AQ drug combination and can also be used to compare the bioavailability of different formulations, including a fixed-dose AS–AQ co-formulation.  相似文献   

19.
This paper describes the development and validation of a novel GC-FID method for the determination of α-tocopherol concentration in human plasma which does not requires derivatization. The standard solutions and the plasma working solutions were prepared in absolute ethanol. To determine the concentration of α-tocopherol in human plasma, an aliquot of the plasma sample was deproteinized with ethanol. α-tocopherol was extracted with a mixture of hexane and dichloromethane (9:1). GC separation was performed using a HP-5 capillary column. Nitrogen was used as carrier gas at a flow-rate of 2 ml min 1. Calibration curves were linear over the concentration range 1–30 μg ml 1 (for standard solutions and solutions without endogenous α-tocopherol in plasma) and 5–34 μg ml 1 (for solutions with endogenous α-tocopherol in plasma). Absolute recovery, precision, sensitivity and accuracy assays were carried out. The analytical recovery of α-tocopherol from plasma averaged 97.44%. The limit of quantification (LOQ) and the limit of detection (LOD) of method for standard samples were 0.35 μg.ml 1 and 0.30 μg.ml 1, respectively. Within-day and between-day precision, expressed as the relative standard deviation (RSD) were less than 4%, and accuracy (relative error) was better than 8%. This novel method, developed and validated in our laboratory, could be successfully applied to the in-vivo determination of α-tocopherol. The endogenous α-tocopherol amounts in blood of twelve healthy volunteers with no vitamin drug usage were measured with this method.  相似文献   

20.
Dimethoate is an organophosphorus toxicant used in agri- and horticulture as a systemic broad-spectrum insecticide. It also exhibits toxic activity towards mammalian organism provoked by catalytic desulfuration in the liver producing its oxon-derivative omethoate thus inhibiting acetylcholinesterase, initiating cholinergic crisis and ultimately leading to death by respiratory paralysis and cardiovascular collapse. Pharmaco- and toxicokinetic studies in animal models help to broaden basic understanding of medical intervention by antidotes and supportive care. Therefore, we developed and validated a LC–ESI-MS/MS method suitable for the simultaneous, selective, precise (RSDintra-day 1–8%; RSDinter-day 5–14%), accurate (intra-day: 95–107%; inter-day: 90–115%), and robust quantification of both pesticides from porcine urine and plasma after deproteinization by precipitation and extensive dilution (1:11,250 for plasma and 1:40,000 for urine). Accordingly, lower limits of quantification (0.24–0.49 μg/ml plasma and 0.78–1.56 μg/ml urine) and lower limits of detection (0.12–0.24 μg/ml plasma and 0.39–0.78 μg/ml urine) were equivalent to quite low absolute on-column amounts (1.1–2.1 pg for plasma and 2.0–3.9 pg for urine). The calibration range (0.24–250 μg/ml plasma and 0.78–200 μg/ml urine) was subdivided into two linear ranges (r2  0.998) each covering nearly two orders of magnitude. The lack of any interfering peak in 6 individual blank specimens from plasma and urine demonstrated the high selectivity of the method. Furthermore, extensive sample dilution causing lowest concentration of potentially interfering matrix ingredients prompted us to develop and validate an additional flow-injection method (FI-ESI-MS/MS). Validation characteristics were as good as for the chromatographic method but sample throughput was enhanced by a factor of 6. Effects on ionization provoked by plasma and urine matrix from 6 individuals as well as in the presence of therapeutics (antidotes) administered in an animal study were investigated systematically underling in the reliability of the presented methods. Both methods were applied to porcine samples derived from an in vivo animal study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号