首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canatoxin, a urease isoform from Canavalia ensiformis seeds, shows insecticidal activity against different insect species. Its toxicity relies on an internal 10 kDa peptide (pepcanatox), released by hydrolysis of Canatoxin by cathepsins in the digestive system of susceptible insects. In the present work, based on the N-terminal sequence of pepcanatox, we have designed primers to amplify by PCR a 270-bp fragment corresponding to pepcanatox using JBURE-II cDNA (one of the urease isoforms cloned from C. ensiformis, with high identity to JBURE-I, the classical urease) as a template. This amplicon named jaburetox-2 was cloned into pET 101 vector to obtain heterologous expression in Escherichia coli of the recombinant protein in C-terminal fusion with V-5 epitope and 6-His tag. Jaburetox-2Ec was purified on Nickel-NTA resin and bioassayed in insect models. Dysdercus peruvianus larvae were fed on cotton seed meal diets containing 0.01% (w/w) Jaburetox-2Ec and, after 11 days, all individuals were dead. Jaburetox-2Ec was also tested against Spodoptera frugiperda larvae and caused 100% mortality. In contrast, high doses of Jaburetox-2Ec were innocuous when injected or ingested by mice and neonate rats. Modeling of Jaburetox-2Ec, in comparison with other peptide structures, revealed a prominent beta-hairpin motif consistent with an insecticidal activity based on either neurotoxicity or cell permeation.  相似文献   

2.
Animals posses a large variety of antimicrobial peptides (AMPs) that serve as effective components in innate host defenses against microbial infections. These antimicrobial peptides differ in amino acid composition, range of antimicrobial specificities, hemolysis, cytotoxicity and mechanisms of action. This study was designed to evaluate their therapeutic potential of the following six antimicrobial peptides initially found from animals: cecropin P1, indolicidin, LL-37, palustrin-OG1, LFP-20 and LFB-11. Our results indicated that cecropin P1 possessed the most desired biological activity, with fast and potent antimicrobial activity but only slight hemolytic or cytotoxic activity against human cells. Indolicidin was more effective against gram-positive bacteria but with higher hemolytic and cytotoxic activity on human peripheral blood mononuclear cell (PBMCs) (P < 0.05). Although LFP-20 and LFB-11 had moderate activity against tested strains and need 30 min to kill E. coli, they showed almost no hemolytic and cytotoxic activity towards PBMCs (P < 0.01). Indolicidin could form pores of well-defined structure in bacterial membranes whereas lysis of E. coli cells was observed after addition LFB-11 and LL-37 at 1 × MIC for 1 h. LL-37 treatment could lead to the leakage of entire bacterial cytoplasmic contents. The most obvious phenomenon was protuberant structures on the E. coli cell surface after incubation with LFP-20, cecropin P1 and palustrin-OG1. The results presented here illustrate that AMPs derived from different animals exhibited different antimicrobial characteristics. Because of their potent and broad-spectrum antimicrobial activity, low cytotoxicity towards normal cells, and the unique mechanism of action, these peptides may provide the impetus for the development of novel strategies for the prevention of bacterial infections in animals.  相似文献   

3.
Ureases are metalloenzymes that are widespread among plants, fungi and bacteria. Urease isoforms (jack bean urease-JBU and canatoxin) from Canavalia ensiformis seeds are toxic to insects and fungi, suggesting a role in plant defense. The entomotoxic effect is due to the release of a 10-kDa peptide by cathepsin-like enzymes in the insect's midgut. Urease causes a decrease in post-feeding weight loss in Rhodnius prolixus, suggesting an effect on water balance. To investigate how this impairment occurs, we have evaluated the action of JBU and the urease-derivated peptide Jaburetox-2Ec on R. prolixus Malpighian tubules and also investigated the involvement of second messengers. JBU and Jaburetox-2Ec affect serotonin-induced secretion from Malpighian tubules. This effect is not cAMP-dependent, but the Jaburetox-2Ec effect is cGMP-dependent. Eicosanoid metabolites and calcium ions appear to be involved in JBU effect on diuresis, but are not involved in the action of Jaburetox-2Ec. Jaburetox-2Ec, but not JBU, causes a change in the transepithelial potential of the tubules. Canatoxin has a similar effect on tubules secretion, decreasing the secretion rate, but the urease from Helicobacter pylori has no significant effect. These data are helpful in our understanding of the actions of ureases and derived peptides on insects, and also reinforces the potential use of these proteins as biopesticides.  相似文献   

4.
Seminalplasmin was specifically hydrolysed employing the proteinases Lys-C and Glu-C. A set of peptides of seminalplasmin were obtained which were used to study their interaction with monospecific anti-seminalplasmin IgGs as well as calmodulin. Two peptides P4 (position 38-47) and P9 (position 4-32) strongly interacted with the polyclonal anti-seminalplasmin IgGs, indicating that a C-terminal (P4) as well as a N-terminal region of seminalplasmin represent major antigenic sites of the polypeptide. From the panel of peptides only peptide P9 was found to bind to calmodulin with high affinity. Thus, the structural requirements for the strong and specific interaction of calmodulin with seminalplasmin apparently reside in the N-terminal sequence 3-32 of the latter.  相似文献   

5.
Toll-like receptor 2 (TLR2) recognizes bacterial derived- and synthetic-lipopeptides after dimerization with TLR1 or TLR6. Hyper-activation of TLR2 has been described in several inflammatory diseases and the discovery of inhibitors of its pro-inflammatory activity represent potential starting points to develop therapeutics in such pathologies. We designed peptides derived from the TLR2 sequence comprising amino acid residues involved in ligand binding (Pam3CSK4) or heterodimerization (TLR2/TLR1) as pointed out by structural data.2 We identified several peptides (P13, P13(LL), P16, P16(LL)) which inhibited TLR2/1 signaling in HEK293-TLR2 cells (MAPK activation and NF-kB activity). Moreover, P13L and P16L decreased TNFα release in human primary PBMCs and mouse macrophages. The peptides were selective for TLR2/1 as they did not inhibit the activity of other TLRs tested. P13L and P16L inhibited the internalization of Pam3CSK4 fluorescently labeled in macrophages and the heterodimerization of TLR2 with TLR1 as demonstrated by immunoprecipitation studies. Our data demonstrate that peptides derived from the region comprising the leucine-rich repeats (LRR) 11 and 13 in the extracellular domain of TLR2 are good starting points to develop more potent anti-inflammatory peptides with TLR2 inhibitory activity.  相似文献   

6.
The osmotin proteins of several plants display antifungal activity, which can play an important role in plant defense against diseases. Thus, this protein can be useful as a source for biotechnological strategies aiming to combat fungal diseases. In this work, we analyzed the antifungal activity of a cacao osmotin-like protein (TcOsm1) and of two osmotin-derived synthetic peptides with antimicrobial features, differing by five amino acids residues at the N-terminus. Antimicrobial tests showed that TcOsm1 expressed in Escherichia coli inhibits the growth of Moniliophthora perniciosa mycelium and Pichia pastoris X-33 in vitro. The TcOsm1-derived peptides, named Osm-pepA (H-RRLDRGGVWNLNVNPGTTGARVWARTK-NH2), located at R23-K49, and Osm-pepB (H-GGVWNLNVNPGTTGARVWARTK-NH2), located at G28-K49, inhibited growth of yeasts (Saccharomyces cerevisiae S288C and Pichia pastoris X-33) and spore germination of the phytopathogenic fungi Fusarium f. sp. glycines and Colletotrichum gossypi. Osm-pepA was more efficient than Osm-pepB for S. cerevisiae (MIC = 40 μM and MIC = 127 μM, respectively), as well as for P. pastoris (MIC = 20 μM and MIC = 127 μM, respectively). Furthermore, the peptides presented a biphasic performance, promoting S. cerevisiae growth in doses around 5 μM and inhibiting it at higher doses. The structural model for these peptides showed that the five amino acids residues, RRLDR at Osm-pepA N-terminus, significantly affect the tertiary structure, indicating that this structure is important for the peptide antimicrobial potency. This is the first report of development of antimicrobial peptides from T. cacao. Taken together, the results indicate that the cacao osmotin and its derived peptides, herein studied, are good candidates for developing biotechnological tools aiming to control phytopathogenic fungi.  相似文献   

7.
Thermal aggregation of betaL-crystallin was higher in the presence of peptide fragments generated from oxidized and trypsin-digested betaL-crystallin compared with thermal aggregation of the control proteins without oxidized betaL-crystallin fragments. Increased aggregation of betaL-crystallin was also observed despite the presence of alpha-crystallin (which has anti-aggregating properties) in the system. Self-aggregation of the oxidized betaL-crystallin fragments per se was not observed under the experimental conditions. Reverse-phase HPLC analysis of the precipitate obtained after heating a mixture of betaL-crystallin and oxidized betaL-crystallin fragments revealed that more than one peptide co-precipitates with betaL-crystallin. Electrospray mass spectrometry analysis of the peptides revealed that the molecular weight(s) of the peptides ranged from 1400-1800. Tandem mass spectrometry and a data base search revealed that two of the peptides originated from betaA4-crystallin (LTIFEQENFLGR, residues 121-132) and betaB3-crystallin (AINGTWVGYEFPGYR, residues 153-167) respectively. Oxidized synthetic peptides representing the same sequence were also found to enhance the aggregation of betaL-crystallin in a manner similar to oxidized lens betaL-crystallin peptides. These data suggest that the polypeptides generated after oxidation and proteolysis of betaL-crystallins interact with denaturing proteins and facilitate their aggregation and light scattering, thus behaving like anti-chaperones.  相似文献   

8.
Synthetic peptides derived from the beta 1 domain of HLA-DR antigens containing RFDS and a peptide derived from the immunoglobulin-like amino-terminal domain of CD4 and containing RADS were shown to exhibit specific dose-dependent inhibitory effects on antigen-induced HLA class II-restricted T-cell proliferation and in vitro antibody synthesis. These inhibitory activities are similar to those exhibited by anti-CD4 and HLA-DR antibodies, respectively. The peptides derived from HLA-DR or CD4 and anti-CD4 or anti-HLA-DR antibodies acted together in synergy to inhibit these responses when the relevant cell populations were incubated with infrainhibitory concentrations of the reagents. In contrast, these peptides were shown to exert no inhibitory activity on nonspecific T-cell activation mediated by ionomycin, phorbol myristate acetate, and interleukin-2.  相似文献   

9.
In order to develop future therapeutic applications for cell penetrating peptides (CPPs), it is essential to characterize their internalization mechanisms, as they might affect the stability and the accessibility of the carried drug. Several internalization mechanisms have been described in literature, such as endocytosis and transduction. In this work we study the internalization mechanism in HeLa cells of two TIRAP derived peptides: pepTIRAP and pepTIRAPALA, where some of the cationic amino acids were replaced with alanines. Detailed analysis of internalization and the peptides electrostatic potential was carried out, to shed light on the internalization mechanism involved. Molecular modeling studies showed that the main difference identified between pepTIRAP and pepTIRAPALA is the distribution of their electrostatic potential field. The structure of pepTIRAP displays a predominantly positive potential when compared to pepTIRAPALA, which has a more balanced potential distribution. In addition, docking experiments show that interactions between pepTIRAP and negatively charged molecules on the cellular surface such as heparan sulfate are stronger than the ones exhibited by pepTIRAPALA. A mathematical model was proposed to quantify the amount of peptide internalized or non-specifically bound to the membrane. The model indicates a stronger interaction of pepTIRAP with the plasma membrane, compared to pepTIRAPALA. We propose these discrepancies are related to the differences in the electrostatic potential characteristics of each peptide. In the case of pepTIRAP, these interactions lead to the formation of nucleation zones, which are the first stage of the transduction internalization mechanism. These results should be considered for effective design of a cell penetrating peptide.  相似文献   

10.
Deprived of heme and partially unfolded hemoglobin, myoglobin and cytochrome c display microbicidal activity against a broad spectrum of microorganisms with half maximal lethal dose estimated at micromolar concentrations. The intact proteins were ineffective. Antibacterial activity of these apohemoproteins was also sustained after digestion to approximately 50 amino acids long peptides but further fragmentation abolished microbicidal properties. The most active fragment of apomyoglobin (corresponding to 56–131 region) showed a pronounced effect on the E. coli membrane permeabilization and its action was sensitive to salt as well as to divalent cations concentrations. The membrane-directed effect was specific toward bacteria but no lipopolysaccharide binding properties were observed. No hemolytic properties, even at high peptide concentrations were found; however, a slight but dose-independent cytotoxic effect was observed on fibroblasts and hepatoma cells. The presented data suggest a `carpet-like' mechanism of the membrane-directed activity and may result from exceptional abilities of hemoprotein-derived peptides to form alpha-helical structures. We postulate that the antimicrobial peptides obtained from the heme-containing proteins should be named hemocidins, in contrast to, e.g., hemorphins displaying opioid-like activity.  相似文献   

11.
Tobacco plants were genetically transformed to generate antisense RNA from a gene construct comprised of a full-length cucumber NADH-dependent hydroxypyruvate reductase (HPR) cDNA placed in reverse orientation between the cauliflower mosaic virus 35S promoter and a nopaline synthase termination/polyadenylation signal sequence. In vivo accumulation of antisense HPR RNA within eight independent transgenic tobacco plants resulted in reductions of up to 50% in both native HPR activity and protein accumulation relative to untransformed tobacco plants (mean transgenote HPR activity=67% wild type, mean transgenote HPR protein=63% wild type). However, in contrast to previous reports describing antisense RNA effects in plants, production of the heterologous HPR antisense RNA did not systematically reduce levels of native tobacco HPR mRNA (mean transgenote HPR mRNA level=135% wild type). Simple regression comparison of the steady-state levels of tobacco HPR mRNA to those of HPR antisense RNA showed a weak positive correlation (r value of 0.548, n=9 ; n is wild type control plus eight independent transformants; significant at 85% confidence level), supporting the conclusion that native mRNA levels were not reduced within antisense plants. Although all transgenic antisense plants examined displayed an apparent reduction in both tobacco HPR protein and enzyme activity, there is no clear correlation between HPR activity and the amount of either sense (r=0.267, n=9) or antisense RNA (r=0.175, n=9). This compares to a weak positive correlation between HPR mRNA levels and the amount of HPR activity observed in wild-type SRI tobacco plants (r=0.603, n=5). The results suggest that in vivo production of this heterologous HPR antisense RNA is inhibitory at the level of HPR-specific translation and produces its effect in a manner not dependent upon, nor resulting in, a reduction in steady-state native HPR mRNA levels. In this context, the observed antisense effect appears to differ mechanistically from most antisense systems described to date.  相似文献   

12.
苏云金芽孢杆菌及其杀虫晶体蛋白 作用机制的研究进展   总被引:7,自引:0,他引:7  
刘子铎  喻子牛 《昆虫学报》2000,43(2):207-213
综合叙述了苏云金芽胞杆菌Bacillus thuringiensis和杀虫晶体蛋白的作用机制及在不同水平上解释这些机制的一些流行模型和有关亚分子结构的作用。  相似文献   

13.
The mechanism of membrane interaction of two amphipathic antimicrobial peptides, MSI-78 and MSI-594, derived from magainin-2 and melittin, is presented. Both the peptides show excellent antimicrobial activity. The 8-anilinonaphthalene-1-sulfonic acid uptake experiment using Escherichia coli cells suggests that the outer membrane permeabilization is mainly due to electrostatic interactions. The interaction of MSI-78 and MSI-594 with lipid membranes was studied using 31P and 2H solid-state NMR, circular dichroism, and differential scanning calorimetry techniques. The binding of MSI-78 and MSI-594 to the lipid membrane is associated with a random coil to alpha-helix structural transition. MSI-78 and MSI-594 also induce the release of entrapped dye from POPC/POPG (3:1) vesicles. Measurement of the phase-transition temperature of peptide-DiPoPE dispersions shows that both MSI-78 and MSI-594 repress the lamellar-to-inverted hexagonal phase transition by inducing positive curvature strain. 15N NMR data suggest that both the peptides are oriented nearly perpendicular to the bilayer normal, which infers that the peptides most likely do not function via a barrel-stave mechanism of membrane-disruption. Data obtained from 31P NMR measurements using peptide-incorporated POPC and POPG oriented lamellar bilayers show a disorder in the orientation of lipids up to a peptide/lipid ratio of 1:20, and the formation of nonbilayer structures at peptide/lipid ratio>1:8. 2H-NMR experiments with selectively deuterated lipids reveal peptide-induced disorder in the methylene units of the lipid acyl chains. These results are discussed in light of lipid-peptide interactions leading to the disruption of membrane via either a carpet or a toroidal-type mechanism.  相似文献   

14.
Antimicrobial peptides(AMPs)are integral components of the innate immune defence system of all complex organisms including plants,insects,and mammals.They have ...  相似文献   

15.
The bacterial biofilm is a complex environment of cells, which secrete a matrix made of various components, mainly polysaccharides and proteins. An understanding of the precise role of these components in the stability and dynamics of biofilm architecture would be a great advantage for the improvement of anti-biofilm strategies. Here, artificial biofilm matrices made of polysaccharides and auto-assembled peptides were designed, and the influence of bacterial amyloid proteins on the mechanical properties of the biofilm matrix was studied. The model polysaccharides methylcellulose and alginate and peptides derived from the amyloid proteins curli and FapC found in biofilms of Enterobacteriaceae and Pseudomonas, respectively, were used. Rheological measurements showed that the amyloid peptides do not prevent the gelation of the polysaccharides but influence deformation of the matrices under shear stress and modify the gel elastic response. Hence the secretion of amyloids could be for the biofilm a way of adapting to environmental changes.  相似文献   

16.
We investigated the possible mechanism of inhibition of porcine pancreatic phospholipase A2 in vitro by rabbit uteroglobin and by the antiflammin peptides. We optimized the conditions of phospholipase A2 assay using a deoxycholate-phosphatidylcholine mixed micellar substrate and established the activity of these inhibitors under optimized conditions. The results of fluorescence studies and crosslinking experiments indicate that the inhibitors interact with the enzyme in solution and affect the increase in intrinsic fluorescence of phospholipase A2 observed upon interaction with a mixed micellar substrate. In addition, we identified a sequence similarity between the antiflammin peptides, the putative active region of uteroglobin and a region in pancreatic phospholipase A2. This region of phospholipase A2 has been previously identified as being involved in the regulation of dimerization of this enzyme, and is conserved in the pancreatic-type enzymes. Taken together, these observations suggest that uteroglobin and antiflammins interact with porcine pancreatic phospholipase A2 and this may, at least in part, explain the enzyme inhibitory effect of these molecules observed in vitro. One possible mechanism of this effect may be an interference with the dimerization process of phospholipase A2 which is associated with interfacial activation.  相似文献   

17.
18.
Kinetic analysis of methyl group transfer from S-adenosyl-L-methionine (SAM) to the 5'-GGATCC recognition site catalyzed by the DNA-[N4-cytosine]-methyltransferase from Bacillus amyloliquefaciens [EC 2.1.1.113] has shown that the dependence of the rate of methylation of the 20-meric substrate duplex on SAM and DNA concentration are normally hyperbolic, and the maximal rate is attained upon enzyme saturation with both substrates. No substrate inhibition is observed even at concentrations many times higher than the Km values (0.107 microM for DNA and 1.45 microM for SAM), which means that no nonreactive enzyme-substrate complexes are formed during the reaction. The overall pattern of product inhibition corresponds to an ordered steady-state mechanism following the sequence SAM decreases DNA decreases metDNA increases SAH increases (S-adenosyl-L-homocysteine). However, more detailed numerical analysis of the aggregate experimental data admits an alternative order of substrate binding, DNA decreases SAM decreases, though this route is an order of magnitude slower.  相似文献   

19.
We have investigated in the present study the effect of both non-selective and selective cationic 14-mer peptides on the lipid orientation of DMPC bilayers by 31P solid-state nuclear magnetic resonance (NMR) spectroscopy. Depending on the position of substitution, these peptides adopt mainly either an α-helical structure able to permeabilize DMPC and DMPG vesicles (non-selective peptides) or an intermolecular β-sheet structure only able to permeabilize DMPG vesicles (selective peptides). Several systems have been investigated, namely bilayers mechanically oriented between glass plates as well as bicelles oriented with their normal perpendicular or parallel to the external magnetic field. The results have been compared with spectral simulations with the goal of elucidating the difference in the interaction of these two types of peptides with zwitterionic lipid bilayers. The results indicate that the perturbation induced by selective peptides is much greater than that induced by non-selective peptides in all the lipid systems investigated, and this perturbation has been associated to the aggregation of the selective β-sheet peptides in these systems. On the other hand, the oriented lipid spectra obtained in the presence of non-selective peptides suggest the presence of toroidal pores. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

20.
In order to develop a novel molecule that recognizes a specific structure of RNA, we have attempted to design peptides having L-alpha-amino acids with a nucleobase at the side chain (nucleobase amino acid (NBA)), expecting that the function of a nucleobase which can specifically recognize a base in RNA is regulated in a peptide conformation. In this study, to demonstrate the applicability of the NBA units in the peptide to RNA recognition, we designed and synthesized a variety of NBA-conjugated peptides, derived from HIV-1 Rev. Circular dichroism study revealed that the conjugation of the Rev peptide with an NBA unit did not disturb the peptide conformation. RNA-binding affinities of the designed peptides with RRE IIB RNA were dependent on the structure of the nucleobase moieties in the peptides. The peptide having the cytosine NBA at the position of the Asn40 site in the Rev showed a higher binding ability for RRE IIB RNA, despite the diminishing the Asn40 function. Furthermore, the peptide having the guanine NBA at the position of the Arg44 site, which is the most important residue for the RNA binding in the Rev, bound to RRE IIB RNA in an ability similar to Rev34-50 with native sequence. These results demonstrate that an appropriate NBA unit in the peptide plays an important role in the RNA binding with a specific contact such as hydrogen bonding, and the interaction between the nucleobase in the peptide and the base in the RNA can enhance the RNA-binding affinity and specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号