首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Dronedarone, a noniodinated benzofuran derivative of amiodarone, is believed to have a better side effect profile, and is currently undergoing phase III clinical trials. A novel method was developed for the determination of dronedarone and its principal metabolite debutyldronedarone in both plasma and myocardial tissue by high-performance liquid chromatography (HPLC) coupled with UV-detection. The assay was also validated for determination of amiodarone and desethylamiodarone. Samples were obtained from healthy humans (plasma) and goats (plasma and myocardium). Sample preparation included deproteinization with acetonitrile and extraction with a mixture of heptane and dichloromethane (50/50, v/v). Chromatographic separation was performed on a Pathfinder PS polymeric C18 column (50 mm × 4.6 mm, 2.5 μm) with a mobile phase of acetonitrile, isopropanol, water and ammonia (80/10/10/0.025, v/v/v/v) at a flow-rate of 1 ml/min. Calibration curves of all analytes were linear in the range of 0.01–5 μg/ml for plasma samples, with a lower limit of quantification (LLOQ) of 0.04 μg/ml. For myocardial tissue samples, linear curves of all analytes were observed in the range of 0.02–500 μg/g, with a LLOQ of 0.08 μg/g. Within- and between-day precision was <18%, and within- and between-day accuracy ranged from 97.5 to 109.7%, with a recovery of 67.6–79.9%. The present method enables sensitive and specific detection of dronedarone, amiodarone and principal metabolites in plasma as well as myocardial tissue.  相似文献   

2.
A high-performance liquid chromatographic method with fluorescence detection for the determination of itopride in human plasma is reported. The sample preparation was based on liquid–liquid extraction of itopride from plasma with t-butylmethylether and dichloromethane (70:30, v/v) mixture followed by a back extraction of the analyte to the phosphate buffer (pH 3.2). Liquid chromatography was performed on an octadecylsilica column (55 mm × 4 mm, 3 μm particles), the mobile phase consisted of acetonitrile–triethylamine–15 mM dihydrogenpotassium phosphate (14.5:0.5:85, v/v/v), pH of the mobile phase was adjusted to 4.8. The run time was 3 min. The fluorimetric detector was operated at 250/342 nm (excitation/emission wavelength). Naratriptan was used as the internal standard. The limit of quantitation was 9.5 ng/ml using 0.5 ml of plasma. The method precision and inaccuracy were less than 8%. The assay was applied to the analysis of samples from a bioequivalence study.  相似文献   

3.
A new simple, rapid, sensitive and accurate quantitative detection method using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) for the measurement of formononetin (FMN) and daidzein (DZN) levels in rat plasma is described. Analytes were separated on a Supelco Discovery C18 (4.6 × 50 mm, 5.0 μm) column with acetonitrile: methanol (50:50, v/v) and 0.1% acetic acid in the ratio of 90:10 (v/v) as a mobile phase. The method was proved to be accurate and precise at linearity range of 5–100 ng/mL with a correlation coefficient (r) of ≥0.996. The intra- and inter-day assay precision ranged from 1.66–6.82% and 1.87–6.75%, respectively; and intra- and inter-day assay accuracy was between 89.98–107.56% and 90.54–105.63%, respectively for both the analytes. The lowest quantitation limit for FMN and DZN was 5.0 ng/mL in 0.1 mL of rat plasma. Practical utility of this new LC–MS/MS method was demonstrated in a pharmacokinetic study in rats following intravenous administration of FMN.  相似文献   

4.
A novel precolumn derivatization reversed-phase high-performance liquid chromatography (RP-HPLC) method with UV–vis detection for the quantitative determination of total concentration of asiatic acid (AA) in beagle dog plasma is described. AA was extracted with n-hexane-dichloromethane-2-propanol (20:10:1, v/v/v) from plasma, which had been hydrolyzed by acid and derivatized with p-Toluidine. Chromatographic separation was achieved on a C18 column using gradient elution in a water–methanol system. Detection was set at UV wavelength of 248 nm. A calibration curve ranging from 0.01 to 1.5 μg/mL was shown to be linear, and the lower limit of quantification (LLOQ) was 0.01 μg/mL. The intra- and inter-day precisions which were determined by three different concentrations (0.05, 0.2 and 0.8 μg/mL) ranged from 4.4% to 13.1% and 4.6% to 14.2%, respectively. Mean extraction recoveries were no less than 65% for AA and ursolic acid (IS). Plasma samples containing asiatic acid were stable for 30 days at ?20 °C. The method was successfully applied to a pharmacokinetic study in beagle dogs after oral administration of Centella asiatica extract, and the main pharmacokinetic parameters obtained were: T1/2, 4.29 h; Tmax, 2.70 h; Cmax, 0.74 μg/mL; AUC0–t and AUC0–∞, 3.74 and 3.82 μg h/mL, respectively.  相似文献   

5.
A rapid, sensitive and specific high performance liquid chromatography–tandem mass spectrometric (HPLC–MS/MS) method has been developed for quantification of mitoxantrone in rat plasma. The analyte and palmatine (internal standard) were extracted from plasma samples with diethyl ether–dichloromethane (3:2, v/v) and separated on a C18 column. The chromatographic separation was achieved within 2.5 min using methanol–10 mM ammonium acetate containing 0.1% acetic acid as the mobile phase at a flow rate of 0.2 mL/min. The method was linear over the range of 0.5–500 ng/mL. The lower limit of quantification (LLOQ) was 0.5 ng/mL. Finally, the method was successfully applied to a pharmacokinetic study of mitoxantrone in rats following intravenous administration.  相似文献   

6.
A highly efficient, selective and specific method for simultaneous quantitation of triprolidine and pseudoephedrine in human plasma by liquid chromatography–ion trap-tandem mass spectrometry coupled with electro spray ionization (LC–ESI-ion trap-tandem MS) has been validated and successfully applied to a clinical pharmacokinetic study. Both targeted compounds together with the internal standard (gabapentin) were extracted from the plasma by direct protein precipitation. Chromatographic separation was achieved on a C18 ACE® column (50.0 mm × 2.1 mm, 5 μm, Advance Chromatography Technologies, Aberdeen, UK), using an isocratic mobile phase, consisting of water, methanol and formic acid (55:45:0.5, v/v/v), at a flow-rate of 0.3 mL/min. The transition monitored (positive mode) was m/z 279.1  m/z 208.1 for triprolidine, m/z 165.9  m/z 148.0 for pseudoephedrine and m/z 172.0  m/z 154.0 for gabapentin (IS). This method had a chromatographic run time of 5.0 min and a linear calibration curves ranged from 0.2 to 20.0 ng/mL for triprolidine and 5.0–500.0 ng/mL for pseudoephedrine. The within- and between-batch accuracy and precision (expressed as coefficient of variation, %C.V.) evaluated at four quality control levels were within 94.3–106.3% and 1.0–9.6% respectively. The mean recoveries of triprolidine, pseudoephedrine and gabapentin were 93.6, 76.3 and 82.0% respectively. Stability of triprolidine and pseudoephedrine was assessed under different storage conditions. The validated method was successfully employed for the bioequivalence study of triprolidine and pseudoephedrine formulation in twenty six volunteers under fasting conditions.  相似文献   

7.
With the expanded use of the combination of artesunate (AS) and amodiaquine (AQ) for the treatment of falciparum malaria and the abundance of products on the market, comes the need for rapid and reliable bioanalytical methods for the determination of the parent compounds and their metabolites. While the existing methods were developed for the determination of either AS or AQ in biological fluids, the current validated method allows simultaneous extraction and determination of AS and AQ in human plasma. Extraction is carried out on Supelclean LC-18 extraction cartridges where AS, its metabolite dihydroartemisinin (DHA) and the internal standard artemisinin (QHS) are separated from AQ, its metabolite desethylamodiaquine (DeAQ) and the internal standard, an isobutyl analogue of desethylamodiaquine (IB-DeAQ). AS, DHA and QHS are then analysed using Hypersil C4 column with acetonitrile–acetic acid (0.05 M adjusted to pH 5.2 with 1.00 M NaOH) (42:58, v/v) as mobile phase at flow rate 1.50 ml/min. The analytes are detected with an electrochemical detector operating in the reductive mode. Chromatography of AQ, DeAQ and IB-DeAQ is carried out on an Inertsil C4 column with acetonitrile–KH2PO4 (pH 4.0, 0.05 M) (11:89, v/v) as mobile phase at flow rate 1.00 ml/min. The analytes are detected by an electrochemical detector operating in the oxidative mode. The recoveries of AS, DHA, AQ and DeAQ vary between 79.1% and 104.0% over the concentration range of 50–1400 ng/ml plasma. The accuracies of the determination of all the analytes are 96.8–103.9%, while the variation for within-day and day-to-day analysis are <15%. The lower limit of quantification for all the analytes is 20 ng/ml and limit of detection is 8 ng/ml. The method is sensitive, selective, accurate, reproducible and suited particularly for pharmacokinetic study of AS–AQ drug combination and can also be used to compare the bioavailability of different formulations, including a fixed-dose AS–AQ co-formulation.  相似文献   

8.
A reverse-phase liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method was developed and validated for determination of aminoflavone (AF) in human plasma. Sample preparation involved a liquid–liquid extraction by the addition of 0.25 mL of plasma with 1.0 mL ethyl acetate containing 50 ng/mL of the internal standard zileuton. The analytes were separated on a Waters X-Terra? MS C18 column using a mobile phase consisting of methanol/water containing 0.45% formic acid (70:30, v/v) and isocratic flow at 0.2 mL/min for 6 min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the AF concentration range of 5–2000 ng/mL in human plasma. The lower limit of quantitation (LLOQ) was 5 ng/mL for AF in human plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical method (<15%). This method was successfully applied to characterize AF plasma concentration-time profile in the cancer patients in a phase I trial.  相似文献   

9.
A simple sensitive and robust method for simultaneous determination of citalopram and desmethylcitalopram was developed using liquid chromatography tandem mass spectrometry (LC–MS/MS). A 200 μL aliquot of plasma sample was employed and deproteinized with methanol and desipramine was used as the internal standard. After vortex mixing and centrifugation, the supernatant was diluted with water (1:1, v/v) and then directly injected to analysis. Analytes were separated by a Zorbax XDB C18 column with the mobile phase composed of acetonitrile and water (30:70, v/v) with 0.25% formic acid and monitored in MRM mode using a positive electrospray source with tandem mass spectrometry detection. The total run time was 3.5 min. The dynamic range was 0.2–100 ng/mL for citalopram and 0.25–50 ng/mL for desmethylcitalopram, respectively. Compared to the best existing literatures for plasma samples, the same LOQ for CIT (0.5 ng/mL) and lower LOQ for DCIT (0.25 vs 5 ng/mL) were reached, and less sample preparation steps and runtime (3.5 vs 10 min) were taken for our method. Accuracy and precision was lower than 8% and lower than 11.5% for either target. Validation results and its application to the analysis of plasma samples after oral administration of citalopram in healthy Chinese volunteers demonstrated the method was applicable to pharmacokinetic studies.  相似文献   

10.
A rapid method to determine fexofenadine concentrations in human plasma using protein precipitation in 96-well plates and liquid chromatography–tandem mass spectrometry was validated. Plasma proteins were precipitated with acetonitrile containing the internal standard fexofenadine-d6, mixed briefly, and then filtered into a collection plate. The resulting filtrate was diluted and injected onto a Phenomenex Gemini C18 (50 mm × 2.0 mm, 5 μm) analytical column. The mobile phase consisted of 0.1% formic acid, 5 mM ammonium acetate in deionized water and methanol (35:65, v/v). The flow rate was 0.2 ml/min and the total run time was 2 min. Detection of the analytes was achieved using positive ion electrospray ionization and high resolution multiple reaction monitoring mode (H-SRM). The linear standard curve ranged from 1 to 500 ng/ml and the precision and accuracy (intra- and inter-run) were within 4.3% and 8.0%, respectively. The method has been applied successfully to determine fexofenadine concentrations in human plasma samples obtained from subjects administered a single oral dose of fexofenadine. The method is rapid, sensitive, selective and directly applicable to human pharmacokinetic studies involving fexofenadine.  相似文献   

11.
A specific, sensitive and rapid method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was developed for the simultaneous determination of olmesartan (OLM) and hydrochlorothiazide (HCTZ) in human plasma and urine. Solid-phase extraction (SPE) was used to isolate the analytes from biological matrices followed by injection of the extracts onto a C18 column with isocratic elution. Detection was carried out on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode using negative electrospray ionization (ESI). The method was validated over the concentration range of 1.00–1000 ng/mL and 5.00–5000 ng/mL for OLM in human plasma and urine as well as 0.500–200 ng/mL and 25.0–25,000 ng/mL for HCTZ in human plasma and urine, respectively. Inter- and intra-run precision of OLM and HCTZ were less than 15% and the accuracy was within 85–115% for both plasma and urine. The average extraction recoveries were 96.6% and 92.7% for OLM, and 87.2% and 72.1% for HCTZ in human plasma and urine, respectively. The linearity, recovery, matrix effect and stability were validated for OLM/HCTZ in human plasma and urine.  相似文献   

12.
Diacerein and aceclofenac are prescribed for reducing the symptoms associated with osteoarthritis. We present a simple HPLC method with UV detection for simultaneous determination of rhein (the immediate metabolite of diacerein) and aceclofenac from human plasma samples. Sample preparation was accomplished through liquid–liquid extraction with ethyl acetate and chromatographic separation was performed on a reversed-phase ODS column. Mobile phase consisted of a mixture of acetate buffer and acetonitrile run under gradient at flow rate of 1.0 ml/min. Wavelength was set at 258 nm. The method was validated for linearity, accuracy, precision and stability. The calibration was linear over the range of 0.1–7.0 μg/ml for rhein and 0.5–20 μg/ml for aceclofenac using 500 μl plasma samples. Extraction recoveries were 85% for rhein and 70% for aceclofenac. The method can easily be adopted for high-throughput clinical and pharmacokinetic studies of above two-drug fixed dose combination formulations.  相似文献   

13.
A rapid, selective and sensitive high performance liquid chromatography–tandem mass spectrometry method (LC–MS/MS) was developed and validated for the determination and pharmacokinetic investigation of cefuroxime in human plasma. Cefuroxime and the internal standard (IS), cefoxitin, were extracted from plasma samples using solid phase extraction with Oasis HLB cartridges. Chromatographic separation was performed on a LiChrospher® 60 RP Select B column (125 mm × 4 mm i.d., 5 μm particle size) using acetonitrile:5 ± 0.2 mM ammonium acetate solution:glacial acetic acid (70:30:0.020, v/v/v) as the mobile phase at a flow rate of 0.8 mL/min. Detection of cefuroxime and cefoxitin was achieved by tandem mass spectrometry with an electrospray ionization (ESI) interface in negative ion mode. The calibration curves were linear over the range of 81.0–15976.2 ng/mL with the lower limit of quantitation validated at 81.0 ng/mL. The intra- and inter-day precisions were within 7.6%, while the accuracy was within ±6.3% of nominal values. No matrix effect was observed in this method. The validated LC–MS/MS method was successfully applied for the evaluation of pharmacokinetic and bioequivalence parameters of cefuroxime after an oral administration of 500 mg cefuroxime tablet to 36 healthy male volunteers.  相似文献   

14.
For the rapid, selective and sensitive analysis of metoclopramide in human plasma, hydrophilic interaction chromatography with electrospray ionization tandem mass spectrometric (HILIC/MS/MS) method was developed. This method involved liquid–liquid extraction with dichloromethane followed by separation on an Atlantis HILIC silica column using the mobile phase of acetonitrile–ammonium formate (100 mM, pH 6.5) (85:15, v/v). Analytes were quantified using electrospray ionization mass spectrometry in the selected reaction monitoring mode. The standard curve was linear (r2 = 0.998) over the concentration range of 2.00–150 ng/mL using 50 μL of plasma sample. The coefficient of variation and relative error for intra- and inter-assay at four QC levels were 1.8–7.7% and ?7.5 to 3.6%, respectively. The matrix effect for metoclopramide and levosulpiride (internal standard) was practically absent. The present method was successfully applied to the pharmacokinetic study of metoclopramide after oral dose of metoclopramide hydrochloride (10 mg) to male healthy volunteers.  相似文献   

15.
A high throughput and specific method using ultra performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) was developed for the simultaneous determination of diltiazem and its two metabolite (N-desmethyldiltiazem and O-desacetyldiltiazem) in human plasma. A one-step liquid–liquid extraction (LLE) with methyl-t-butyl ether (MTBE) involved for the extraction of diltiazem (DLTZ), metabolites (DMeD and DAcD) and internal standard. Analytes were chromatographed on a ACQUITY UPLC? BEH C18 column (100 mm × 2.1 mm, i.d., 1.7 μm) with isocratic elution at a flow rate of 0.2 mL/min using 10 mM ammonium acetate buffer–acetonitrile (25:75, v/v). The Quattro Premier XE LC–MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. Using 300 μL plasma, the method was validated over the concentration range 0.48–639.9 ng/mL for DLTZ and 0.24–320.1 for DMeD and 0.24–320.7 ng/mL for DAcD, with a lower limit of quantification of 0.48 ng/mL for DLTZ and 0.24 ng/mL for metabolites. The intra- and inter-day precision and accuracy were within 10.0%. The recovery was 77.4%, 76.0%, 74.5% and 74.1% for DLTZ, DMeD, DAcD and Ziprasidone, respectively. Total run time was 2.0 min only.  相似文献   

16.
A simple, sensitive and high throughput liquid chromatography/positive-ion electrospray ionization mass spectrometry (LC–ESI-MS/MS) method has been developed for the simultaneous determination of valacyclovir and acyclovir in human plasma using fluconazole as internal standard (IS). The method involved solid phase extraction of the analytes and IS from 0.5 mL human plasma with no reconstitution and drying steps (direct injection of eluate). The chromatographic separation was achieved on a Gemini C18 analytical column using isocratic mobile phase, consisting of 0.1% formic acid and methanol (30:70 v/v), at a flow-rate of 0.8 mL/min. The precursor  product ion transition for valacyclovir (m/z 325.2  152.2), acyclovir (m/z 226.2  152.2) and IS (m/z 307.1  220.3) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) mode. The method was validated over the concentration range 5.0–1075 ng/mL and 47.6–10225 ng/mL for valacyclovir and acyclovir respectively. The mean recovery of valacyclovir (92.2%), acyclovir (84.2%) and IS (103.7%) from spiked plasma samples was consistent and reproducible. The bench top stability of valacyclovir and acyclovir was extensively evaluated in buffered and unbuffered plasma. It was successfully applied to a bioequivalence study in 41 healthy human subjects after oral administration of 1000 mg valacyclovir tablet formulation under fasting condition.  相似文献   

17.
A sensitive, specific and rapid liquid chromatography–mass spectrometry (LC–MS) method has been developed and validated for the simultaneous determination of xanthotoxin (8-methoxypsoralen), psoralen, isoimpinellin (5,8-dimethoxypsoralen) and bergapten (5-methoxypsoralen) in rat plasma using pimpinellin as an internal standard (IS). The plasma samples were pretreated by protein precipitation with methanol and chromatographic separation was performed on a C18 column with a mobile phase composed of 1 mmol ammonium acetate and methanol (30:70, v/v). The detection was accomplished by multiple-reaction monitoring (MRM) scanning via electrospray ionization (ESI) source operating in the positive ionization mode. The optimized mass transition ion-pairs (m/z) for quantitation were 217.1/202.1 for xanthotoxin, 187.1/131.1 for psoralen, 247.1/217.0 for isoimpinellin, 217.1/202.1 for bergapten, and 247.1/231.1 for IS. The total run time was 6 min between injections. The calibration curves were linear over the investigated concentration range with all correlation coefficients higher than 0.998. The lower limits of quantitation (LLOQ) of these analytes were less than 1.21 ng/ml. The intra- and inter-day RSD were no more than 9.7% and the relative errors were within the range of ?8.1% to 4.5%. The average extraction recoveries for all compounds were between 90.7% and 106.2%. The proposed method was further applied to the determination of actual plasma samples from rats after oral administration of Radix Glehniae extract.  相似文献   

18.
A rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the determination of picamilon concentration in human plasma. Picamilon was extracted from human plasma by protein precipitation. High performance liquid chromatography separation was performed on a Venusil ASB C18 column with a mobile phase consisting of methanol ?10 mM ammonium acetate–formic acid (55:45:01, v/v/v) at a flow rate of 0.65 ml/min. Acquisition of mass spectrometric data was performed in selected reaction monitoring mode, using the transitions of m/z 209.0  m/z (78.0 + 106.0) for picamilon and m/z 152.0  m/z (93.0 + 110.0) for paracetamol (internal standard). The method was linear in the concentration range of 1.00–5000 ng/ml for the analyte. The lower limit of quantification was 1.00 ng/ml. The intra- and inter-assay precision were below 13.5%, and the accuracy was between 99.6% and 101.6%. The method was successfully applied to characterize the pharmacokinetic profiles of picamilon in healthy volunteers. This validated LC–MS/MS method was selective and rapid, and is suitable for the pharmacokinetic study of picamilon in humans.  相似文献   

19.
Pyrrole (Py)–imidazole (Im) polyamides synthesized by combining N-methylpyrrole and N-methylimidazole amino acids have been identified as novel candidates for gene therapy. In this study, a sensitive method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) with an electrospray ionization (ESI) source was developed and validated for the determination and quantification of Py–Im polyamide in rat plasma. Py–Im polyamide was extracted from rat plasma by solid-phase extraction (SPE) using a Waters Oasis® HLB cartridge. Separation was achieved on an ACQUITY UPLC HSS T3 (1.8 μm, 2.1 × 50 mm) column by gradient elution using acetonitrile:distilled water:acetic acid (5:95:0.1, v/v/v) and acetonitrile:distilled water:acetic acid (95:5:0.1, v/v/v). The method was validated over the range of 10–1000 ng/mL and the lower limit of quantification (LLOQ) was 10 ng/mL. This method was successfully applied to the investigation of the pharmacokinetics of Py–Im polyamide after intravenous administration.  相似文献   

20.
A highly sensitive and selective LC–MS/MS method was developed and validated for the determination of dauricine in human plasma, using protopine as internal standard (IS). The analyte and IS were extracted by liquid–liquid extraction and analyzed by LC–MS/MS. Chromatographic separation was performed on Agilent TC-C18 column with a mobile phase of methanol–water–glacial acetic acid (60:40:0.8, v/v/v) at a flow rate of 0.7 mL/min. Detection was performed on a triple quadrupole tandem mass spectrum by multiple reaction monitoring (MRM) mode using the electrospray ionization technique in positive mode. The method was linear over the concentration range of 1–200 ng/mL. The lower limit of quantification (LLOQ) was 1 ng/mL in human plasma with acceptable precision and accuracy. The intra- and inter-day precision was less than 5.9% determined from quality control (QC) samples at concentrations of 2.0, 20.0 and 160 ng/mL, and the accuracy was within ±9.9%. This method was successfully applied for the evaluation of pharmacokinetics of dauricine after oral doses of 100, 300 and 600 mg phenolic alkaloids of menispermum dauricum tablet (PAMDT) to 12 Chinese healthy volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号