首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the determination of organotin compounds in urine samples based on liquid–liquid extraction (LLE) in hexane and gas chromatographic separation was developed and optimized. Seven organotin species, namely monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), tetrabutyltin (TeBT), monophenyltin (MPhT), diphenyltin (DPhT) and triphenyltin (TPhT), were in situ derivatized by sodium tetraethylborate (NaBEt4) to form ethylated less polar derivatives directly in the urine matrix. The critical parameters which have a significant effect on the yield of the successive liquid–liquid extraction procedure were examined, by using standard solutions of tetrabutyltin in hexane. The method was optimized for use in direct analysis of undiluted human urine samples and ways to overcome practical problems such as foam formation during extraction, due to various constituents of urine are discussed. After thorough optimization of the extraction procedure, all examined species could be determined after 3 min of simultaneous derivatization and extraction at room temperature and 5 min phase separation by centrifugation. Gas chromatography with a microwave-induced plasma atomic emission detector (MIP-AED) as element specific detector was employed for quantitative measurements, while a quadrupole mass spectrometric detector (MS) was used as molecular specific detector. The detection limits were between 0.42 and 0.67 μg L?1 (as Sn) for the quantitative LLE–GC–MIP-AED method and the precision between 4.2% and 11.7%, respectively.  相似文献   

2.
A rapid-resolution ultra high-performance liquid chromatography separation method (UHPLC) for the simultaneous determination of the following β-blockers: milrinone, sotalol, metoprolol, propranolol and carvedilol, and their metabolites: 5′-hydroxylphenyl-carvedilol, O-desmethylcarvedilol, 4-hydroxypropranolol, α-hydroxy-metoprolol, O-desmethyl-metoprolol; the following isoflavones: genistein, daidzein, glycitin, glycitein, puerarin and biochanin A; as well as their metabolites: dihydrogenistein, desmethylglycitein, 8-hydroxygenistein, daidzein-7,4′-diglucoside, 8-hydroxydaidzein, dihydrobiochanin A in human urine was optimized. The analysed compounds were extracted from human urine by means of solid phase extraction (SPE). The effective UHPLC separation of the examined compounds was applied on a Hypersil GOLD? (50 mm × 2.1 mm, 1.9 μm) column with a gradient mobile phase system and a UV detector. The complete separation of all analytes was achieved within 8.0 min. The method was validated for the determination of the aforementioned substances in human urine. The linear ranges, limits of detection (LOD) and limits of quantification (LOQ) for β-blockers, isoflavones and their metabolites were determined. The intra- and inter-day precision (%C.V.) was less than 4.48%, and the intra-day and inter-day accuracy was less than 4.74%. The tested SPE sorbent proved that appropriate absolute recoveries can be obtained for Oasis HLB (Waters). The mean recovery of the analytes, using the new SPE procedure, amounted from 70.14% to 99.85%. The present paper reports, for the first time, the method for the determination of β-blockers, isoflavones and their metabolites in human urine samples. The newly developed method was suitably validated and successfully applied for the analysis of the certain of the aforementioned analytes in human urine samples obtained from the patients suffering cardiovascular disease.  相似文献   

3.
A simple and sensitive method is proposed for the determination of seven low-molecular mass aldehydes in human urine samples using liquid chromatography with tandem mass spectrometric detection. Urine samples diluted twofold with 0.3 M hydrochloric acid are aspirated into a LiChrolut EN solid-phase extraction column impregnated with 2,4-dinitrophenylhydrazine for cleanup, derivatization and preconcentration of the aldehydes. After elution of the hydrazones with acetonitrile, an aliquot is injected directly into the chromatograph. Identification and quantification of aldehydes was performed with electrospray in negative ion mode by selected reaction monitoring. By using synthetic urine samples, linearity is established over the concentration range 0.1–30 μg/l and limits of detection from 15 to 65 ng/l. The intra- and inter-day precision (RSD, %) of the aldehydes ranged from 2.9% to 6.4% and 3.6% to 9.3%, respectively, and specific uncertainties were ca. 5.0 ± 0.3 ng for all aldehydes. Average recoveries performed on two levels by enriching synthetic urine samples ranged between 92% and 100%. The method was also validated in terms of study sample stability including long-term and short-term analyte stability, freeze–thaw and extract stability. In summary, the method proposed surpasses other recent chromatographic alternatives in terms of the limit of detection and sample requirements for analysis.  相似文献   

4.
A simple, sensitive, and inexpensive singe-drop microextraction (SDME) followed by gas chromatography and flame-ionization detection (GC-FID) was developed for determination of nicotine, anabasine, and cotinine in human urine and saliva samples. The target compounds were extracted from alkaline aqueous sample solution into an organic acceptor drop suspended on the tip of a 25-μL GC microsyringe in the aqueous sample solution. This microsyringe was also used for direct injection after extraction. Under optimized experimental conditions, calibration plots were found to be linear in the range of 0.5–25.0, 0.5–65.0, and 0.5–45.0 mg L?1 for nicotine, anabasines and cotinine, respectively. The method detection limit values were in the range of 0.33–0.45 mg L?1. Intra-day and inter-day precisions for peak area ratios were in the range of 1.3–9.2% and 2.0–7.0%, respectively. The proposed procedure was successfully applied to the determination of analytes in spiked urine and saliva samples with satisfactory results. The mean relative recoveries of spiked water samples ranged over 71.2–111.0%, with relative standard deviations varying from 2.3% to 10.0%.  相似文献   

5.
Among urinary organophosphorus pesticide (OP) metabolites, dialkyl phosphates (DAPs) have been most often measured as a sensitive biomarker in non-occupational and occupational OP exposure risk assessment. In our conventional method, we have employed a procedure including simple liquid–liquid extraction (diethyl ether/acetonitrile), derivatization (pentafluorobenzylbromide, PFBBr) and clean-up (multi-layer column) for gas chromatography–mass spectrometry (GC–MS) analysis starting from 5-mL urine samples. In this study, we introduce a revised analytical method for urinary DAPs; its main modification was aimed at improving the pre-derivatization dehydration procedure. The limits of detection were approximately 0.15 μg/L for dimethylphosphate (DMP), 0.07 μg/L for diethylphosphate (DEP), and 0.05 μg/L for both dimethylthiophosphate (DMTP) and diethylthiophosphate (DETP) in 2.5-mL human urine samples. Within-run precision (percent of relative standard deviation, %RSD) at the DAP levels varying in the range of 0.5–50 μg/L was 6.0–19.1% for DMP, 3.6–18.3% for DEP, 8.0–25.6% for DMTP and 9.6–27.8% for DETP. Between-run precision at 5 μg/L was below 15.7% for all DAPs. The revised method proved to be feasible to routine biological monitoring not only for occupational OP exposure but also for environmental background levels in the general population. Compared to our previous method, the revised method underscores the importance of adding pre-derivatization anhydration for higher sensitivity and precision.  相似文献   

6.
A simple and rapid method for the determination of seven phenothiazines derivatives (chlorpromazine, promethazine, levomepromazine, prochlorperazine, trifluoperazine, fluphenazine and thioridazine) in human urine samples is presented. The analytes are extracted from the sample in 50 μL of the ionic liquid 1-butyl-3-methyl-imidazolium hexafluorophosphate working in an automatic flow system under dynamic conditions. The chemical affinity between the extractant and the analytes allows a good isolation of the drugs from the sample matrix achieving at the same time their preconcentration. The separation and detection of the extracted compounds is accomplished by liquid chromatography and UV detection. The proposed method is a valuable alternative for the analysis of these drugs in urine within the concentration range 0.07–10 μg mL?1. Limits of detection were in the range from 21 ng mL?1 (thioridazine) to 60 ng mL?1 (levomepromazine). The repeatability of the proposed method expressed as RSD (n = 5) varied between 2.2% (levomepromazine) and 3.9% (chlorpromazine).  相似文献   

7.
A novel validated liquid chromatography–tandem mass spectrometry (LC–MS/MS) procedure was developed and fully validated for the simultaneous determination of nicotine-N-β-d-glucuronide, cotinine-N-oxide, trans-3-hydroxycotinine, norcotinine, trans-nicotine-1′-oxide, cotinine, nornicotine, nicotine, anatabine, anabasine and cotinine-N-β-d-glucuronide in human plasma or urine. Target analytes and corresponding deuterated internal standards were extracted by solid-phase extraction and analyzed by LC–MS/MS with electrospray ionization (ESI) using multiple reaction monitoring (MRM) data acquisition. Calibration curves were linear over the selected concentration ranges for each analyte, with calculated coefficients of determination (R2) of greater than 0.99. The total extraction recovery (%) was concentration dependent and ranged between 52–88% in plasma and 51–118% in urine. The limits of quantification for all analytes in plasma and urine were 1.0 ng/mL and 2.5 ng/mL, respectively, with the exception of cotinine-N-β-d-glucuronide, which was 50 ng/mL. Intra-day and inter-day imprecision were ≤14% and ≤17%, respectively. Matrix effect (%) was sufficiently minimized to ≤19% for both matrices using the described sample preparation and extraction methods. The target analytes were stable in both matrices for at least 3 freeze–thaw cycles, 24 h at room temperature, 24 h in the refrigerator (4 °C) and 1 week in the freezer (?20 °C). Reconstituted plasma and urine extracts were stable for at least 72 h storage in the liquid chromatography autosampler at 4 °C. The plasma procedure has been successfully applied in the quantitative determination of selected analytes in samples collected from nicotine-abstinent human participants as part of a pharmacokinetic study investigating biomarkers of nicotine use in plasma following controlled low dose (7 mg) transdermal nicotine delivery. Nicotine, cotinine, trans-3-hydroxycotinine and trans-nicotine-1′-oxide were detected in the particular sample presented herein. The urine procedure has been used to facilitate the monitoring of unauthorized tobacco use by clinical study participants at the time of physical examination (before enrollment) and on the pharmacokinetic study day.  相似文献   

8.
The rodenticide monofluoroacetate (MFA) and monochloroacetate (MCA), a chemical intermediate from several chemical syntheses, have been identified as potential agents of chemical terrorism due to their high toxicity. In preparation for response to poisonings and mass exposures, we have developed a quantification method using isotopic dilution to determine MFA and MCA in urine from 50 to 5000 ng/mL. Both analytes were extracted from urine using solid-phase extraction; extraction recoveries were 62% (MFA) and 76% (MCA). The extracts were then separated with isocratic high-performance liquid chromatography and identified using electrospray ionization tandem mass spectrometry, with detection limits of 0.9 and 7.0 ng/mL for MFA and MCA, respectively. Selectivity was established for both analytes with unique chromatographic retention times which were correlated with isotopically labeled internal standards and the use of two mass spectral transitions for each compound. The intra-day variability was less than 5% for both analytes and the inter-day variability was 7% for MFA and 6% for MCA.  相似文献   

9.
In the present work, a simple and high sensitive method based on hollow fiber liquid phase microextraction (HF-LPME) was developed followed by high performance liquid chromatography (HPLC) for determination of ultra-trace amounts of Se(IV) after derivatization in biological and natural water samples. Se(IV) was complexed with o-phenylenediamine to form piazselenol. The formed piazselenol was extracted into 20 μL of 1-octanol located in the lumen of a hollow fiber and the solution was injected into HPLC-UV for analysis. Using the Taguchi method, an orthogonal array design (OAD), OA16 (45) was employed to optimize the HF-LPME of piazselenol. The effect of five experimental factors (each factor at four levels) including the volume of the organic phase, extraction time, pH of the solution, stirring rate and ionic strength on the extraction efficiency of piazselenol was studied and optimized. The maximum extraction efficiency of piazselenol was obtained at 20 μL of 1-octanol as the extracting solvent, 30 min extraction time, pH 2, stirring rate of 500 rpm and 30% (w/v) NaCl. Under the optimum conditions, preconcentration factors up to 130 were achieved and the relative standard deviation (%RSD) of the method was <3.7% for different concentrations of Se(IV). The calibration curves were obtained in the ranges of 0.2–100 and 0.05–10 μg L?1 for the 11 and 50 mL of the sample volumes with reasonable linearity, respectively (r2 > 0.995). The limits of detection (LOD) were 0.1 and 0.02 μg L?1 for the 11 and 50 mL sample volumes, respectively (S/N = 3). Finally, the applicability of the proposed method was evaluated by the extraction and determination of Se(IV) in the plasma, urine and water samples.  相似文献   

10.
A method for the simultaneous determination of 1-octacosanol and 1-triacontanol and their main metabolites in rat plasma was developed. The procedure involved ethanolic NaOH saponification of the sample, acidification, liquid–liquid extraction, and derivatization of the analytes to its trimethylsilylether/ester, followed analysis by gas chromatography–mass spectrometry (GC–MS) in selected ion monitoring (SIM) mode. Quantification was performed by the internal standard method using betulin. The method had a good linearity over the range 8.4–540 ng/ml (r  0.998) and showed an excellent intra-day (R.S.D. = 0.59–3.06%) and inter-day (R.S.D. = 2.99–5.22%) precision according to the acceptance criteria. The detection limits ranged between 1.32 and 3.47 ng/ml. The method was applied successfully to study the total plasmatic concentration of 1-octacosanol, octacosanoic acid, 1-triacontanol, and triacontanoic acid, after an oral dose of policosanols mixture, using plasma samples of 100 μl.  相似文献   

11.
A simple and novel method of single drop liquid–liquid–liquid microextraction (SD-LLLME) coupled with capillary electrophoresis (CE) for the determination of six fluoroquinolones (FQs) was developed. The method was eventually applied to extraction and preconcentration of FQs in human urine samples. Good linear relationships were obtained for all analytes in a range of 40–1000 μg L?1 with the correlation coefficients from 0.9913 to 0.9995. The limit of detections (LODs) varied from 7.4 to 31.5 μg L?1 at a signal-to-noise (S/N) of 3. The recoveries at two spiking levels were 81.8–104.9% with relative standard deviations <8.3%.  相似文献   

12.
A selective method based on high-performance liquid chromatography with electrochemical detection (HPLC-ECD) has been developed to enable simultaneous determination of three fluoroquinolones (FQs), namely danofloxacin (DANO), difloxacin (DIFLO) and sarafloxacin (SARA). The fluoroquinolones are separated on a Novapack C-18 column and detected in a high sensitivity amperometric cell at a potential of +0.8 V. Solid-phase extraction was used for the extraction of the analytes in real samples. The range of concentration examined varied from 10 to 150 ng g?1 for danofloxacin, from 25 to 100 ng g?1 for sarafloxacin and from 50 to 315 ng g?1 for difloxacin, respectively. The method presents detection limits under 10 ng g?1 and recoveries around 90% for the three analytes have been obtained in the experiments with fortified samples. This HPLC-ECD approach can be useful in the routine analysis of antibacterial residues being less expensive and less complicated than other more powerful tools as hyphenated techniques.  相似文献   

13.
To determine the biomarkers of exposure to xylene, urinary 2-, 3- and 4-methyl-hippuric acids, a new HPLC/DAD analytical method has been developed, which uses β-cyclodextrin as an additive for elution; its complexing abilities are exploited to achieve complete chromatographic separation of the three isomers. The mobile phase was a 3% aqueous solution of β-cyclodextrin, pH 3, and methanol, 80:20, in isocratic conditions, with a flow rate of 1 mL/min. To optimize quantitative analysis three wavelengths were employed for detection: λ = 198 nm, λ = 200 nm, and λ = 202 nm. SPE was applied for the extraction from urine samples of analytes. Validation parameters show recoveries always above 82%; LOD was set at 1 μg/mL with an LOQ of 3 μg/mL. The linear dynamic range (from 4 to 100 μg/mL) showed excellent correspondence. This method is rapid and inexpensive and can be applied to several samples simultaneously using a manifold for SPE extraction. The analytes were separated completely and could be fully quantified. The method was used for the analysis of urine samples from 54 workers exposed to xylene in hospital laboratories and showed a good applicability while allowing quantification even at low doses.  相似文献   

14.
We report an improved solid-phase extraction-high-performance liquid chromatography–tandem mass spectrometry method with isotope dilution quantification to measure seven atrazine metabolites in urine. The metabolites measured were hydroxyatrazine (HA), diaminochloroatrazine (DACT), desisopropylatrazine (DIA), desethylatrazine (DEA), desethylatrazine mercapturate (DEAM), atrazine mercapturate (ATZM), and atrazine (ATZ). Using offline mixed-mode reversed-phase/cation-exchange solid-phase extraction dramatically increased recovery and sensitivity by reducing the influence of matrix components during separation and analysis. DACT extraction recovery improved to greater than 80% while the other analytes had similar extraction efficiencies as previously observed. Limits of detection were lower than our previous method (0.05–0.19 ng/mL) with relative standard deviations less than 10%. The total runtime was shorter (18 min) than the previous on-line method, thus it is suitable for large-scale sample analyses. We increased the throughput of our method twofold by using the newer extraction technique.  相似文献   

15.
A sensitive method for the determination of pamidronate disodium [(3-amino-1-hydroxypropylidene)bisphosphonate, APD] in urine has been developed and validated. The procedure involves a triple co-precipitation with calcium phosphate, solid-phase extraction on a quaternary ammonium column, derivatization with 1-naphthylisothiocyanate and ion-pair liquid–liquid extraction. From the two reaction products, naphthylthiocarbamyl-APD is converted into the other, naphthylcarbamyl-APD, by an oxidative desulphuration with hydrogen peroxide prior to analysis by ion-pair HPLC and fluorescence detection at 285/390 nm. The method has a coefficient of variation of 7% for the intra-assay precision of 99 ng ml−1 APD and 11% for the inter-assay precision. The lower limit of quantification is 3 ng ml−1 APD in 2.5 ml of human urine.  相似文献   

16.
A specific, sensitive and rapid method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was developed for the simultaneous determination of olmesartan (OLM) and hydrochlorothiazide (HCTZ) in human plasma and urine. Solid-phase extraction (SPE) was used to isolate the analytes from biological matrices followed by injection of the extracts onto a C18 column with isocratic elution. Detection was carried out on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode using negative electrospray ionization (ESI). The method was validated over the concentration range of 1.00–1000 ng/mL and 5.00–5000 ng/mL for OLM in human plasma and urine as well as 0.500–200 ng/mL and 25.0–25,000 ng/mL for HCTZ in human plasma and urine, respectively. Inter- and intra-run precision of OLM and HCTZ were less than 15% and the accuracy was within 85–115% for both plasma and urine. The average extraction recoveries were 96.6% and 92.7% for OLM, and 87.2% and 72.1% for HCTZ in human plasma and urine, respectively. The linearity, recovery, matrix effect and stability were validated for OLM/HCTZ in human plasma and urine.  相似文献   

17.
A simple, sensitive and specific high-performance liquid chromatography method has been developed for the determination of nortriptyline (NT) in plasma samples. The assay involved derivatization with 9H-fluoren-9-ylmethyl chloroformate (Fmoc-Cl) and isocratic reversed-phase (C18) chromatography with fluorescence detection. The developed method required only 100 μl of plasma sample, deproteinized and derivatized in one step. Calibration curves were lineal over the concentration range of 5–5000 ng/ml. The derivatization reaction was performed at room temperature in 20 min and the obtained NT derivative was stable for at least 48 h at room temperature. The within-day and between-day relative standard deviation was below 8%. The limit of detection (LOD) was 2 ng/ml, and the lower limit of quantification (LLOQ) was established at 10 ng/ml. The method was applied on plasma collected from rats, at different time intervals, after intravenous administration of 0.5 mg of NT.  相似文献   

18.
A rapid method has been developed to analyse CP 47, 497 in human urine. Urine samples were diluted with water:acetonitrile (90:10, v/v) and sample aliquots were analysed by triple quadrupole tandem mass spectrometry with a runtime of 5 min. Multiple reaction monitoring (MRM) as survey scan was performed. The method was validated in urine, according to an in-house validation protocol based on the criteria defined in Commission Decision 2002/657/EC. Three MRM transitions were monitored. The decision limit (CCα) was 0.01 μg mL?1 and for the detection capability a (CCβ) value of 0.02 μg mL?1 was obtained. The measurement uncertainty of the method was 21%. Fortifying human urine samples (n = 18) in three separate assays, show the accuracy of the method to be between 95 and 96%. The precision of the method, expressed as RSD values for the within-lab reproducibility at the three levels of fortification (0.1, 0.15 and 0.2 μg mL?1) was less than 10% respectively. The method proved to be simple, robust and time efficient. To the best of our knowledge there are no LC–MS methods for the determination of CP 47, 497 with validation data in urine.  相似文献   

19.
Fast and reproducible Capillary Zone Electrophoresis (CZE) method for the quantification of (+)-S clopidogrel carboxylic acid metabolite in human fluids was elaborated for the first time. Optimal buffer and CZE conditions were established to obtain the complete separation of clopidogrel, its metabolite and piroxicam (internal standard), during one analytical run. Finally, resolution of the analytes was obtained in an uncoated silica capillary filled with a phosphate buffer of pH 2.5. The analytes were isolated from plasma and urine samples using solid phase extraction (SPE). Validation of the CZE method was carried out. The calibration curve of clopidogrel was linear in the range of 0.5–10.0 mg/L in plasma and urine, whereas for (+)-S carboxylic acid metabolite linearity was confirmed in the range of 0.25–20.0 mg/L in plasma and 0.25–10.0 mg/L in urine. Intra- and inter-day precision and accuracy were repeatable. LOD and LOQ were also estimated. SPE recovery of the analytes from plasma and urine was comparable and greater than 80%. The validated method was successfully applied in pharmacokinetic investigations of (+)-S carboxylic acid metabolite of clopidogrel following the oral administration of clopidogrel to patients prior to percutaneous coronary intervention.  相似文献   

20.
A derivatization procedure using phenyl isocyanate was adapted to liquid chromatography ion trap mass spectrometry (LC–MSn) for confirmation and quantification of aminoglycoside residues in milk. Aminoglycoside residues were extracted from milk with acid and isolated from the matrix with a weak cation exchange solid-phase extraction cartridge. After isolating the compounds from the milk, derivatives of gentamicin, neomycin, and tobramycin were formed by reacting the drugs with phenyl isocyanate in the presence of triethylamine. The analytes were separated using a dilute formic acid/acetonitrile gradient on a reversed-phase LC column. The derivatized compounds were analyzed using positive ion electrospray LC–MSn with ion trap detection. Product ion spectra were generated from the derivatized protonated molecules. Specific ion transitions were evaluated for quantitative determination and qualitative confirmation of residues in milk. Using this procedure, residues were qualitatively confirmed in milk samples fortified with gentamicin and neomycin at levels ranging from 15 to 300 ng mL?1. Gentamicin has four major components that were successfully separated and confirmed independently; for quantitative determination the peak areas from the four analogs were summed. Tobramycin was added as an internal standard for quantitation to mitigate the effects of matrix ion suppression and variable recoveries. Overall recoveries for this method ranged from 80% to 120% with relative standard deviations of less than 25%. The method detection limits are 9.8 ng mL?1 for NEO and 12.8 ng mL?1 for total GEN residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号