首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen mustards alkylate DNA primarily at the N7 position of guanine. Using an approach analogous to that of the Maxam-Gilbert procedure for DNA sequence analysis, we have examined the relative frequencies of alkylation for a number of nitrogen mustards at different guanine-N7 sites on a DNA fragment of known sequence. Most nitrogen mustards were found to have similar patterns of alkylation, with the sites of greatest alkylation being runs of contiguous guanines, and relatively weak alkylation at isolated guanines. Uracil mustard and quinacrine mustard, however, were found to have uniquely enhanced reaction with at least some 5'-PyGCC-3' and 5'-GT-3' sequences, respectively. In addition, quinacrine mustard showed a greater reaction at runs of contiguous guanines than did other nitrogen mustards, whereas uracil mustard showed little preference for these sequences. A comparison of the sequence-dependent variations of molecular electrostatic potential at the N7-position of guanine with the sequence dependent variations of alkylation intensity for mechlorethamine and L-phenylalanine mustard showed a good correlation in some regions of the DNA, but not others. It is concluded that electrostatic interactions may contribute strongly to the reaction rates of cationic compounds such as the reactive aziridinium species of nitrogen mustards, but that other sequence selectivities can be introduced in different nitrogen mustard derivatives.  相似文献   

2.
We have synthesised an homologous series of n-bromoalkylphenanthridinium bromides and studied their DNA-binding and antitumour properties. Each of these compounds has the capacity both to intercalate and alkylate DNA. Dialysis measurements reveal a relatively high affinity for calf thymus DNA, being about 10(5) M-1 at ionic strength 0.01. Incubating calf thymus DNA-ligand complexes having a ligand-to-basepair ratio of 0.4 at 37 degrees C for 18 h leads to maximum alkylation levels of about one ligand molecule bound irreversibly per 40 basepairs. The reactivity of these compounds towards DNA is chain-length dependent, the n-decyl compound, for example, requiring about 10-times the ligand-to-basepair input ratio of the n-hexyl derivative to reach the same level of alkylation. The limited degree of alkylation is a consequence of conversion of the alkylbromides to the less reactive alkylchlorides in the buffer medium. The results of DNA sequencing experiments indicate that the n-hexyl derivative alkylates at guanines occurring in 5'-GT-3' sequences and in runs of guanines [(Gp)n]. The corresponding n-decyl compound, on the other hand, is highly selective for guanines in 5'-GT-3' sequences only and also reacts weakly with some adenines. None of the phenanthridinium compounds showed significant antitumour activity in the P388 murine leukaemia test system.  相似文献   

3.
A series of 4-substituted aniline mustards of widely varying reactivities have been evaluated for their mutagenic effects in Salmonella typhimurium strains of varying uvrB gene and plasmid status, and for their ability to cause mitotic crossing-over in Saccharomyces cerevisiae. The 4-methyl aniline mustard N,N-bis(2-chloroethyl)-4-methylaniline and its corresponding half-mustard N-(2-chloroethyl)-4-methylaniline showed widely different effects in the various bacterial strains, with the half-mustard being much less toxic than the full mustard in the uvrB- strain TA100. However, in the uvrB+ strain TA1978+, possessing an intact excision repair system, both compounds were equally toxic and the full mustard was the more mutagenic. Both compounds were equally effective in promoting mitotic crossing-over in yeast. For a series of 4-substituted full mustards, the toxicity in S. typhimurium strain TA100 correlated with substituent electronic parameters in the same way as does mammalian cell toxicity, supporting the view that the primary mode of toxicity is via DNA cross-linking, even for unreactive analogues. However, there were no obvious correlations between substituent physiochemical properties and mutagenic potential in bacteria, suggesting that mutagenic events are subject to a variety of influences other than the reactivity of the mustard group. In contrast, the most chemically reactive compounds were the most toxic and most recombinogenic in yeast.  相似文献   

4.
The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.  相似文献   

5.
The esters of Hecogenin and aza-homo-Hecogenin with N,N-bis(2-chloroethyl)aminocinnamic acid isomers have been prepared and their cytogenetic studies of structure-biological activity relationship were evaluated. The cytogenetic effects (sister chromatid exchanges (SCEs) induction and proliferation rate indices (PRIs) depression) by o-, m- and p-[N,N-bis(2-chloroethyl)amino] cinnamic acid were also investigated. Among the above compounds tested, those of the m-[N,N-bis(2-chloroethyl)amino] cinnamic acid and of the o-[N,N-bis(2-chloroethyl)amino] cinnamic acid ester of aza-homo-Hecogenin were more active in comparison to the others.  相似文献   

6.
Anti benzo[a]pyrene diol epoxide (BPDE) alkylates guanines of DNA at N7 in the major groove and at the exocyclic amino group in the minor groove. In this report we investigated the rates of BPDE hydrolysis, DNA alkylation and subsequent depurination of BPDE-adducted pBR322 DNA fragment using polyacrylamide gel electrophoresis. Preincubation studies showed that it hydrolyzed completely in triethanolamine buffer in <2 min. The depurination kinetics showed that a fraction of the N7 alkylated guanine depurinated rapidly; however a significant amount of N7 guanine alkylation remained stable to spontaneous depurination over a 4-h period. Similar results were obtained for the hydrolysis and alkylation rates of syn isomer but it required nearly 500 times more concentration to induce similar levels of N7 guanine alkylation. Cadmium ion strongly inhibited the N7 guanine alkylation of both isomers. But the minor groove alkylation was not affected as demonstrated by postlabeling assay which confirmed the presence of heat-and cadmium-stable minor groove adducts in BPDE-treated calf thymus DNA. Based on these and our earlier findings, we propose a mechanism for the synergistic effect of cadmium in chemically induced carcinogenesis.  相似文献   

7.
The mutagenic activity of five dichloroethylamino 2-nitrobenzofuran derivatives and one dichloroethylamino 2-nitronaphthofuran derivative was analysed in the Salmonella/microsome assay. We investigated the influence of the position of the dichloroethylamino and/or the methoxy groups on the mutagenic activity of these nitro arenofurans in S. typhimurium strain TA100 and its variant TA100NR, deficient in nitroreductase. Without metabolic activation 7-[bis(2-chloroethyl)amino]-2-nitronaphtho[2,1-b]furan (1), 4-[bis(2-chloroethyl)amino]-7-methoxy-2-nitrobenzofuran (2), 7-[bis(2-chloroethyl)amino]-4-methoxy-2-nitrobenzofuran (5) and 6-[bis(2-chloroethyl)amino]-2-nitrobenzofuran (6) are mutagenic in TA100, while 4-[bis(2-chloroethyl)amino]-5-methoxy-2-nitrobenzofuran (4) is weakly mutagenic and 5-[bis(2-chloroethyl)-amino]-2-nitrobenzofuran (3) toxic. In the NR deficient strain compounds 1, 3 and 6 are strong mutagens and 4 is weakly positive. The two isomers 2 and 5 are negative in that strain. The naphthofuran derivative 1 is highly mutagenic in the absence of S9 mix in both strains considered, but less than R7000 (7). A decrease in the electronic polarity of compound 1 versus compound 7 according to the hypothesis developed by Royer et al. is a possible explanation. After exogenous metabolic activation by S9 mix all the compounds tested are highly mutagenic in both Salmonella strains. The position of the dichloroethylamino group and/or the presence of a methoxyl on the alpha-nitroarenofuran derivatives seem to modify the activity of bacterial as well as exogenous nitroreductases or other activating enzymes.  相似文献   

8.
Pyrimidine nucleosides were treated with chloroethylene oxide (CEO) and 2-chloroacetaldehyde (CAA) in methanol and, following trimethylsilylation, the products were analysed by combined gas chromatography-mass spectrometry (GC-MS). Reaction of CEO with 2'-deoxycytidine gave 3,N4-etheno-2'-deoxycytidine and diadduct isomers in which a 1-hydroxy-2-chloroethyl group was substituted for hydrogen on either deoxyribose hydroxyl group. When the N-3-position of 2'-deoxycytidine was blocked by a methyl group, CEO or CAA added a 2-chlorovinyl group at the exocyclic N4 amino nitrogen, as evidenced by a pair of cis/trans isomers. Reaction of 3-methylcytidine and CEO also gave the cis/trans 2-chlorovinyl base adducts, as well as six isomers with a 1-hydroxy-2-chloroethyl group attached to ribose and nine isomeric diadducts, which are possibly positional and optical isomers. Although CEO and CAA were less reactive towards uracil in 3-methyluridine than to cytosine in 3-methyl(deoxy)-cytidine, both electrophiles were able to alkylate 3-methyluridine on ribose, yielding 1-hydroxy-2-chloroethyl derivatives. These data suggest that CEO and CAA may also yield non-cyclic adducts with cytosine in double-stranded DNA where the N-3 position is of low accessibility. Such adducts are of interest in view of their potential promutagenic properties. The data also imply a new mechanism of reaction of CEO with nucleophiles.  相似文献   

9.
Styrene 7,8-oxide (SO), a major metabolite of styrene, is classified as a probable human carcinogen. In the present work, salmon testis DNA was reacted with SO and the alkylation products were analysed after sequential depurination in neutral or acidic conditions followed by HPLC separation and UV-detection. A novel finding was that the N-3 position of adenine was the next most reactive alkylation site in double-stranded DNA, comprising 4% of the total alkylation, as compared to alkylation at the N-7 position of guanine, 93% of the total alkylation. Both alpha- and beta-products of SO were formed at these two sites. Other modified sites were N2-guanine (1.5%, alpha-isomer), 1-adenine (0.4%, both isomers) and N6-adenine (0.7%, both isomers) as well as 1-hypoxanthine (0.1%, alpha-isomer), formed by deamination of the corresponding 1-adenine adduct. The results indicated that in double-stranded DNA N-7 of guanine and N-3 of adenine account for 97% of alkylation by SO. However, these abundant adducts are not stable, the half-life of depurination in DNA for 3-substituted adenines being approximately 10 and approximately 20 h, for alpha- and beta-isomers, respectively, and 51 h for both isomers of 7-substituted guanines.  相似文献   

10.
The prodrug p-[N,N-bis(2-chloroethyl)amino]phenyl phosphate (phenol mustard phosphate, POMP) was prepared from p-[N,N-bis(2-chloroethyl)amino]phenol (phenol mustard, POM) by phosphorylation with phosphoryl chloride, followed by aqueous hydrolysis. It was found that POMP was much less cytotoxic than POM when tested against H2981 human lung and H3396 human breast carcinoma cells in vitro. Pretreatment of the H2981 cells with L6-alkaline phosphatase (L6-AP), a monoclonal antibody conjugate that could bind to cell surface antigens, greatly enhanced the cytotoxic effects of POMP in an immunologically specific manner. Owing to its reduced toxicity in nude mice, larger amounts of POMP compared to POM could be administered. Neither agent exhibited significant in vivo antitumor activity when tested against subcutaneous H2981 tumors in nude mice. However, antitumor activity was observed in animals receiving L6-AP 48 h prior to POMP administration. This level of activity was greater than with the drugs alone, or a combination of 1F5-AP (nonbinding control) with POMP.  相似文献   

11.
Aryl or tert-butyl substituent in the 6 position of 3,9-dihydro-3-[(2-hydroxyethoxy)methyl]-9-oxo-6-R-5H-imidazo[1,2-a]purine (6-R-TACV) 1 partly directs aralkylation reactions into unusual positions: N-4 to give 3 and C-7 to give N-5,7-disubstituted or N-4,7-disubstituted derivatives. In the case of alkylation the effect is limited to aryl substituent and position N-4. Replacement of acyclic moiety of 1 with a ribosyl one like in 7 prevents N-4 substitution. Cleavage of the third ring of 3b to give 3-benzylacyclovir 10 is an example of a new short route to 3-aralkyl-9-substituted guanines.  相似文献   

12.
N epsilon-Nitroso-N epsilon- [N'-(2-chloroethyl)carbamoyl]-L-lysine (I) and N epsilon- [N'-(2-chloroethyl)-N'-nitrosocarbamoyl]-L-lysine (II), the isomers being the constituents of antitumor agent Lysomustine, were obtained by RFHPLC. The study of cytotoxicity of the above compounds against K562 cells showed that the lesions induced by isomer (II) produce a significant cytotoxic effect but can be efficiently repaired by the action of MGMT (O6-methylaguanine DNA methyltransferase). Under similar conditions, the lesions induced by isomer (I) produce substantially smaller effect but are weakly if at all repairable by MGMT. The effects of a clinically approved agent Lysomustine, which is the mixture of isomers (I) and (II), are similar to those of isomer (II). The results obtained point to a different chemical nature of DNA lesions induced by two Lysomustine isomers. Our data indicate that Lysomustine and its isomer (II) can be used for in vitro selection of cells expressing MGMT.  相似文献   

13.
Antiplatelet effects of conjugated linoleic acid isomers   总被引:8,自引:0,他引:8  
Conjugated diene isomers of linoleic acid (CLA) are normal constituents of certain foods and exhibit anticarcinogenic and antiatherogenic properties. In the present study, the effects of several CLA isomers on human platelet aggregation and arachidonic acid metabolism were examined. It was found that 9c,11t-CLA, 10t, 12c-CLA and 13-hydroxy-9c,11t-octadecadienoic acid (13-HODE) inhibited arachidonic acid- and collagen-induced platelet aggregation with I50s in the 5-7 microM range. The nonconjugated 9c, 12c-LA was about 300% and 50%, respectively, less potent an inhibitor with these aggregating agents. Using either thrombin or the calcium ionophore A23187 as aggregating agents, a CLA isomer mix was also found to be more inhibitory than 9c,12c-LA. The 9c,11t- and 10t,12c-CLA isomers as well as the CLA isomer mix inhibited formation of the proaggregatory cyclooxygenase-catalyzed product TXA2, as measured by decreased production of its inactive metabolite [14C]TXB2 from exogenously added [14C]arachidonic acid (I50s=9-16 microM). None of the CLA isomers tested inhibited production of the platelet lipoxygenase metabolite [14C]12-HETE. The additional presence of a hydroxyl group gave opposite results: 13-HODE (I50=3 microM) was about 4-fold more potent a cyclooxygenase inhibitor than the 9c,11t-CLA isomer but 9-HODE was 2- to 3-fold less effective an inhibitor (I50=34 microM) of [14C]TXB2 formation than the corresponding 10t,12c-CLA. In both the aggregation and arachidonic acid metabolism experiments, the inhibitory effects of CLA on platelets were reversible and dependent on the time of addition of either the aggregating agent or the [14C]arachidonic acid substrate. These studies suggest that CLA isomers may also possess antithrombotic properties.  相似文献   

14.
Conjugated linoleic acid (CLA) isomers are present in human foods derived from milk or ruminant meat. To study their metabolism, (9Z,11E)-, (10E,12Z)- and (10Z,12Z)-[1-(14)C]-octadecadienoic acids with high radiochemical and isomeric purities (>98%) were prepared by stereoselective multi-step syntheses involving sequential substitution of 1,2-dichloro-ethene. In the case of the (9Z,11E) isomer, a first metal-catalyzed cross-coupling reaction between (E)-1,2-dichloro-ethene and 2-non-8-ynyloxy-tetrahydro-pyran, obtained from 7-bromo-heptan-1-ol, gave a conjugated chloroenyne. A second coupling reaction with hexylmagnesium bromide provided a heptadecenynyl derivative. Stereoselective reduction of the triple bond and bromination afforded (7E,9Z)-17-bromo-heptadeca-7,9-diene. Formation of the Grignard reagent and carbonation with 14CO(2) gave (9Z,11E)-[1-(14)C]-octadeca-9,11-dienoic acid (overall yield from 7-bromo-heptan-1-ol, 14.4%). (10E,12Z)- and (10Z,12Z)-[1-(14)C]-octadeca-10,12-dienoic acids were synthesized by the same methodology using 1-heptyne, 8-bromo-octan-1-ol and, respectively, (E)-1,2-dichloro-ethene and its (Z) isomer (overall yield from 8-bromo-octan-1-ol, 13.1% (10E,12Z); 17.2% (10Z,12Z)). Impurities (<2% if present) were identified as being (E,E) CLA isomers and were removed by RP-HPLC. Metabolism studies in animal are in progress.  相似文献   

15.
16.
K E Reilly  R Becka  G J Thomas 《Biochemistry》1992,31(12):3118-3125
The rate of deuterium exchange of a purine 8CH group in DNA is highly sensitive to both macromolecular secondary structure and intermolecular interactions which restrict solvent access to the major groove [Lamba, O.P., Becka, R., & Thomas, G.J., Jr. (1990) Biopolymers 29, 1465-1477]. We have exploited the sensitivity of the 8CH----8CD reaction to probe DNA recognition by the helix-turn-helix (HTH) motif of phage lambda cI repressor. We find that purine exchanges in the 19-base-pair OL1 operator are strongly and specifically restricted by binding of the HTH N-terminal domain of the repressor fragment (RF) comprising residues 1-102. The kinetics indicate large-scale obstruction of solvent access to operator 7N-8C purine sites. Interpretation of the exchange kinetics using a simple model suggests that only 7 purine residues (5 of 10 adenines and 2 of 9 guanines) remain unrestricted with respect to 8CH exchange in complexes of OL1 with the wild-type repressor. On the other hand, the 8CH exchange profile for the complex of OL1 with the Tyr88----Cys mutant repressor indicates that 9 purines (7 adenines and 2 guanines) are exchangeable. These results suggest important differences in major groove recognition in the two complexes. The proposed 8CH labeling profiles are consistent with molecular models of related complexes determined by X-ray crystallography [Jordan, S.R., & Pabo, C.O. (1988) Science 242, 893-899] and indicate that the structures observed in the crystal are largely maintained in solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Valproic acid, an antiepileptic drug, is transformed into diunsaturated metabolites in humans. Synthesis of the geometric isomers of 2-(1'-propenyl)-2-pentenoic acid and 2-(1'-propenyl)-3-pentenoic acid was attempted using known procedures. The final product, a mixture of isomers, was converted into tert-butyldimethylsilyl or ethyl derivatives. Capillary gas-liquid chromatography-mass spectrometry analysis of the derivatives showed at least three isomeric dienoic acids from synthesized products. Argentation thin-layer chromatography was effective in resolving the isomeric mixture into a single isomer or mixture of two isomers. Thin-layer chromatography and gas-liquid chromatography retention data, photochemical isomerization studies, and nuclear magnetic resonance spectrometry were used to characterize the dienoic acids. By comparison of the retention times of the diunsaturated metabolites with synthesized reference compounds, the structure assigned to the major diunsaturated metabolite is 2-[(E)-1'-propenyl](E)-2-pentenoic acid.  相似文献   

18.
A series of new 4-amino-3-[3-[4-(2-methoxy or nitro phenyl)-1-piperazinyl] propyl]thio]-5-(substitutedphenyl)[1,2,4]triazoles 11a-t was synthesized in order to obtain compounds with high affinity and selectivity for 5-HT(1A) receptor over the alpha(1)-adrenoceptor. A series of isomeric 4-amino-2-[3-[4-(2-methoxy or nitro phenyl)-1-piperazinyl]propyl]-5-(substitutedphenyl)-2,4-dihydro-3H[1,2,4]triazole-3-thiones 12a-r was also isolated and characterized. New compounds were tested to evaluate their affinity for 5-HT(1A) receptor and alpha(1)-adrenoceptor in radioligand binding experiments. As a general trend, triazoles 11a-t showed a preferential affinity for the 5-HT(1A) receptor whereas isomeric 2,4-dihydro-3H[1,2,4]triazole-3-thiones 12a-r preferentially bind to the alpha(1)-adrenoceptor site. Several molecules showed affinities in the nanomolar range and 4-amino-3-[3-[4-(2-methoxyphenyl)-1-piperazinyl]propyl]thio]-5-(4-propyloxy-phenyl)[1,2,4]triazole (11o) was the most selective derivative for the 5-HT(1A) receptor (K(i) alpha(1)/K(i) 5-HT(1A)=55). The decrease in 5-HT(1A) receptor selectivity in 3-[3-[4-(2-methoxyphenyl)-1-piperazinyl]propyl]thio]-5-(substitutedphenyl)[1,2,4] triazole 14a-b, lacking in the amino group in 4-position of the triazole ring, in comparison with their analogues in the series 11a-t, suggest that the amino function represents a critical structural feature in determining 5-HT(1A) receptor selectivity in this class of compounds.  相似文献   

19.
Radioactive [3H]5-demethoxyubiquinone-9 (3-methyl-2-nonaprenyl-6-methoxy-1,4-benzo-quione), an intermediate in the biosynthesis of ubiquione-9 by selected microorganisms and by the rat, has been synthesized. 4-Methyl-3-nitrophenol was converted to the corresponding anisole with [3H]methyl iodide and the anisole was then reduced to the corresponding aniline. Oxidation of 6-methyl-3-methoxy [3H]aniline with chromic acid gave the corresponding 1,4-benzo-quinone which was reduced and alkylated with solanesol in the presence of boron trifluorideetherate. Oxidation with ferric chloride gave two isomers, 5-demethoxyubiquinone-9 and 6-methyl-2-nonaprenyl-3-methoxy-1,4-benzoquinone which were separated by thin layer chromatography. The [3H]methoxyl-5-demethoxyubiquinone-9 prepared had a specific radioactivity of 100 mCi/mmole.  相似文献   

20.
Chen Y  You Y  Jin R  Guo ZY  Feng YM 《Biochemistry》2004,43(28):9225-9233
Although insulin and insulin-like growth factor-1 (IGF-1) belong to one family, insulin folds into one thermodynamically stable structure, while IGF-1-folds into two thermodynamically stable structures (native and swap forms). We have demonstrated previously that the bifurcating folding behavior of IGF-1 is mainly controlled by its B-domain. To further elucidate which parts of the sequences determine their different folding behavior, by exchanging the N-terminal sequences of mini-IGF-1 and recombinant porcine insulin precursor (PIP), we prepared four peptide models: [1-9]PIP, [1-10]mini-IGF-1, [1-4]PIP, and [1-5]mini-IGF-1 by means of protein engineering, and their disulfide rearrangement, V8 digestion, circular dichroic spectra, disulfide stability, and in vitro refolding were investigated. Among them only [1-9]PIP, like mini-IGF-1/IGF-1, was expressed in yeast as two isomers: isomer 1 (corresponding to swap IGF-1) and isomer 2 (corresponding to native IGF-1), which are supported by the experimental results of disulfide rearrangements, peptide mapping of V8 endoprotenase digests, circular dichroic analysis, in vitro refolding, and disulfide stability analysis. The other peptide models, [1-10]mini-IGF-1, [1-4]PIP, and [1-5]mini-IGF-1, fold into one stable structure as PIP does, which indicates that sequence 1-4 of mini-IGF-1 is important for the folding behavior of mini-IGF-1/IGF-1 but not sufficient to lead to a bifurcating folding. The results demonstrated that the folding information, by which mini-IGF-1/IGF-1-folds into two thermodynamically structures, is encoded/written in its sequence 1-9, while sequences 1-10 of B chain in insulin/PIP play an important role in the guide of its unique disulfide pairing during the folding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号