首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (Qdo) from the 1H-4-oxoquinoline utilizing Pseudomonas putida strain 33/1, which catalyzes the cleavage of 1H-3-hydroxy-4-oxoquinoline to carbon monoxide and N-formylanthranilate, is devoid of any transition metal ion or other cofactor and thus represents a novel type of ring-cleavage dioxygenase. Gene qdo was cloned and sequenced. Its overexpression in Escherichia coli yielded recombinant His-tagged Qdo which was catalytically active. Qdo exhibited 36% and 16% amino acid identity to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) and atropinesterase (a serine hydrolase), respectively. Qdo as well as Hod possesses a SXSHG motif, resembling the motif GXSXG of the serine hydrolases which comprises the active-site nucleophile (X=arbitrary residue).  相似文献   

2.
1H-3-Hydroxy-4-oxoquinoline 2,4-dioxygenase (Qdo) is a cofactor-free dioxygenase proposed to belong to the alpha/beta hydrolase fold superfamily of enzymes. Alpha/beta Hydrolases contain a highly conserved catalytic triad (nucleophile-acidic residue-histidine). We previously identified a corresponding catalytically essential histidine residue in Qdo. However, as shown by amino acid replacements through site-directed mutagenesis, nucleophilic and acidic residues of Qdo considered as possible triad residues were not absolutely required for activity. This suggests that Qdo does not contain the canonical catalytic triad of the alpha/beta hydrolase fold enzymes. Some radical trapping agents affected the Qdo-catalyzed reaction. A hypothetical mechanism of Qdo-catalyzed dioxygenation of 1H-3-hydroxy-4-oxoquinoline is compared with the dioxygenation of FMNH2 catalyzed by bacterial luciferase, which also uses a histidine residue as catalytic base.  相似文献   

3.
1H-3-Hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) is a cofactor-less dioxygenase belonging to the alpha/beta hydrolase fold family, catalyzing the cleavage of 1H-3-hydroxy-4-oxoquinaldine (I) and 1H-3-hydroxy-4-oxoquinoline (II) to N-acetyl- and N-formylanthranilate, respectively, and carbon monoxide. Bisubstrate steady-state kinetics and product inhibition patterns of HodC, the C69A protein variant of Hod, suggested a compulsory-order ternary-complex mechanism, in which binding of the organic substrate precedes dioxygen binding, and carbon monoxide is released first. The specificity constants, k(cat)/K(m,A) and k(cat)/K(m,O)()2, were 1.4 x 10(8) and 3.0 x 10(5) M(-1) s(-1) with I and 1.2 x 10(5) and 0.41 x 10(5) M(-1) s(-1) with II, respectively. Whereas HodC catalyzes formation of the dianion of its organic substrate prior to dioxygen binding, HodC-H251A does not, suggesting that H251, which aligns with the histidine of the catalytic triad of the alpha/beta hydrolases, acts as general base in catalysis. Investigation of base-catalyzed dioxygenolysis of I by electron paramagnetic resonance (EPR) spectroscopy revealed formation of a resonance-stabilized radical upon exposure to dioxygen. Since in D(2)O spectral properties are not affected, exchangeable protons are not involved, confirming that the dianion is the reactive intermediate that undergoes single-electron oxidation. We suggest that in the ternary complex of the enzyme, direct single-electron transfer from the substrate dianion to dioxygen may occur, resulting in a radical pair. Based on the estimated spin distribution within the radical anion (observed in the model reaction of I), radical recombination may produce a C4- or C2-hydroperoxy(di)anion. Subsequent intramolecular attack would result in the 2,4-endoperoxy (di)anion that may collapse to the reaction products.  相似文献   

4.
1H-3-Hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod), catalyzing cleavage of its heteroaromatic substrate to form carbon monoxide and N-acetylanthranilate, belongs to the α/β hydrolase fold family of enzymes. Analysis of protein variants suggested that Hod has adapted active-site residues of the α/β hydrolase fold for the dioxygenolytic reaction. H251 was recently shown to act as a general base to abstract a proton from the organic substrate. Residue S101, which corresponds to the nucleophile of the catalytic triad of α/β-hydrolases, presumably participates in binding the heteroaromatic substrate. H102 and residues located in the topological region of the triad’s acidic residue appear to influence O2 binding and reactivity. A tyrosine residue might be involved in the turnover of the ternary complex [HodH+–3,4-dioxyquinaldine dianion–O2]. Absence of viscosity effects and kinetic solvent isotope effects suggests that turnover of the ternary complex, rather than substrate binding, product release, or proton movements, involves the rate-determining step in the reaction catalyzed by Hod.  相似文献   

5.
Thermodynamic stability parameters and the equilibrium unfolding mechanism of His 6HodC69S, a mutant of 1 H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) having a Cys to Ser exchange at position 69 and an N-terminal hexahistidine tag (His 6HodC69S), have been derived from isothermal unfolding studies using guanidine hydrochloride (GdnHCl) or urea as denaturants. The conformational changes were monitored by following changes in circular dichroism (CD), fluorescence, and dynamic light scattering (DLS), and the resulting transition curves were analyzed on the basis of a sequential three-state model N = I = D. The structural changes have been correlated to catalytic activity, and the contribution to stability of the disulfide bond between residues C37 and C184 in the native protein has been established. A prominent result of the present study is the finding that, independent of the method used for denaturing the protein, the unfolding mechanism always comprises three states which can be characterized by, within error limits, identical sets of thermodynamic parameters. Apparent deviations from three-state unfolding can be rationalized by the inability of a spectroscopic probe to discriminate clearly between native, intermediate, and unfolded ensembles. This was the case for the CD-monitored urea unfolding curve.  相似文献   

6.
The alpha/beta hydrolase fold.   总被引:21,自引:0,他引:21  
We have identified a new protein fold--the alpha/beta hydrolase fold--that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta sheet, not barrel, of eight beta-sheets connected by alpha-helices. These enzymes have diverged from a common ancestor so as to preserve the arrangement of the catalytic residues, not the binding site. They all have a catalytic triad, the elements of which are borne on loops which are the best-conserved structural features in the fold. Only the histidine in the nucleophile-histidine-acid catalytic triad is completely conserved, with the nucleophile and acid loops accommodating more than one type of amino acid. The unique topological and sequence arrangement of the triad residues produces a catalytic triad which is, in a sense, a mirror-image of the serine protease catalytic triad. There are now four groups of enzymes which contain catalytic triads and which are related by convergent evolution towards a stable, useful active site: the eukaryotic serine proteases, the cysteine proteases, subtilisins and the alpha/beta hydrolase fold enzymes.  相似文献   

7.
BACKGROUND: The complex polysaccharide rhamnogalacturonan constitutes a major part of the hairy region of pectin. It can have different types of carbohydrate sidechains attached to the rhamnose residues in the backbone of alternating rhamnose and galacturonic acid residues; the galacturonic acid residues can be methylated or acetylated. Aspergillus aculeatus produces enzymes that are able to perform a synergistic degradation of rhamnogalacturonan. The deacetylation of the backbone by rhamnogalacturonan acetylesterase (RGAE) is an essential prerequisite for the subsequent action of the enzymes that cleave the glycosidic bonds. RESULTS: The structure of RGAE has been determined at 1.55 A resolution. RGAE folds into an alpha/beta/alpha structure. The active site of RGAE is an open cleft containing a serine-histidine-aspartic acid catalytic triad. The position of the three residues relative to the central parallel beta sheet and the lack of the nucleophilic elbow motif found in structures possessing the alpha/beta hydrolase fold show that RGAE does not belong to the alpha/beta hydrolase family. CONCLUSIONS: Structural and sequence comparisons have revealed that, despite very low sequence similarities, RGAE is related to seven other proteins. They are all members of a new hydrolase family, the SGNH-hydrolase family, which includes the carbohydrate esterase family 12 as a distinct subfamily. The SGNH-hydrolase family is characterised by having four conserved blocks of residues, each with one completely conserved residue; serine, glycine, asparagine and histidine, respectively. Each of the four residues plays a role in the catalytic function.  相似文献   

8.
The collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of 4-hydroxyproline by the hydroxylation of proline residues in -Xaa-Pro-Gly-sequences. The vertebrate enzymes are alpha 2 beta 2 tetramers in which protein-disulfide isomerase serves as the beta subunit. Two isoforms of the catalytic alpha subunit have been identified and shown to form [alpha(I)]2 beta 2 and [alpha(II)]2 beta 2 tetramers, the type I and type II C-P4Hs, respectively. The peptide-substrate-binding domain of type I C-P4H has been shown to be located between residues 138 and 244 in the 517-residue alpha(I) subunit and to be distinct from the catalytic domain that is located in the C-terminal region. We report here that a recombinant human C-P4H alpha(I) polypeptide Phe144-Ser244 forms a folded domain consisting of five alpha helices and one short beta strand. This structure is quite different from those of other proline-rich peptide-binding modules, which consist mainly of beta strands. Binding of the peptide (Pro-Pro-Gly)2 to this domain caused major chemical shifts in many backbone amide resonances, the residues showing the largest shifts being mainly hydrophobic, including three tyrosines. The Kd values determined by surface plasmon resonance and isothermal titration calorimetry for the binding of several synthetic peptides to the alpha(I) and the corresponding alpha(II) domain were very similar to the Km and Ki values for these peptides as substrates and inhibitors of the type I and type II C-P4H tetramers. The Kd values of the alpha(I) and alpha(II) domains for (Gly-Pro-4Hyp)5 were much higher than those for (Pro-Pro-Gly)5, indicating a marked decrease in the affinity of hydroxylated peptides for the domain. Many characteristic features of the binding of peptides to the type I and type II C-P4H tetramers can thus be explained by the properties of binding to this domain rather than the catalytic domain.  相似文献   

9.
Acetylxylan esterase from Trichoderma reesei removes acetyl side groups from xylan. The crystal structure of the catalytic core of the enzyme was solved at 1.9 A resolution. The core has an alpha/beta/alpha sandwich fold, similar to that of homologous acetylxylan esterase from Penicillium purpurogenum and cutinase from Fusarium solani. All three enzymes belong to family 5 of the carbohydrate esterases and the superfamily of the alpha/beta hydrolase fold. Evidently, the enzymes have diverged from a common ancestor and they share the same catalytic mechanism. The catalytic machinery of acetylxylan esterase from T. reesei was studied by comparison with cutinase, the catalytic site of which is well known. Acetylxylan esterase is a pure serine esterase having a catalytic triad (Ser90, His187, and Asp175) and an oxyanion hole (Thr13 N, and Thr13 O gamma). Although the catalytic triad of acetylxylan esterase has been reported previously, there has been no mention of the oxyanion hole. A model for the binding of substrates is presented on the basis of the docking of xylose. Acetylxylan esterase from T. reesei is able to deacetylate both mono- and double-acetylated residues, but it is not able to remove acetyl groups located close to large side groups such as 4-O-methylglucuronic acid. If the xylopyranoside residue is double-acetylated, both acetyl groups are removed by the catalytic triad: first one acetyl group is removed and then the residue is reorientated so that the nucleophilic oxygen of serine can attack the second acetyl group.  相似文献   

10.
Stability, unfolding mechanism, spectroscopic, densimetric, and structural characteristics of the oxidatively stable C69S variant (HodC) of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) have been determined by classical and pressure modulation scanning calorimetry (DSC and PMDSC, respectively), circular dichroism (CD) spectroscopy, differential scanning densimetry (DSD), and dynamic light scattering measurements. At 25 degrees C, hexahistidine-tagged HodC has a hydrodynamic radius of 2.3 nm and is characterized by an unusually high degree of alpha-helical structure of approximately 60%, based on deconvolution of CD spectra. The percentage of beta-sheets and -turns is expected to be relatively low in view of its sequence similarity to proteins of the alpha/beta-hydrolase fold superfamily. His6HodC exhibits three-state unfolding (N <--> I <--> D) with an intermediate state I that exhibits at the transition temperature a volume larger than that of the native or denatured state. The intermediate state I is also associated with the highest isothermal expansion coefficient, alphaP, of the three states and exhibits a significantly lower percentage of alpha-helical structure than the native state. The stability difference between the native and intermediate state is rather small which makes I a potential candidate for reactions with various ligands, particularly those having a preference for the apparently preserved beta-type motifs.  相似文献   

11.
This study investigates the catalytic and allosteric roles of a flexible loop in the tryptophan synthase alpha 2 beta 2 complex. This loop connects helix 6 and strand 6 in the alpha subunit, an 8-fold alpha/beta barrel polypeptide. We have engineered three mutations in this disordered loop: a deletion of residues 185-187 and the replacement of threonine 183 by serine (T183S) or by alanine (T183A). Position 183 is a site of an inactivating mutation identified by Yanofsky's group (Yanofsky, C., Drapeau, G. R., Guest, J. R., and Carlton, B. C. (1967) Proc. Natl. Acad. Sci. U.S.A. 57, 296-298). The three engineered alpha subunits form stable, stoichiometric alpha 2 beta 2 complexes with the beta subunit which bind alpha and beta subunit ligands. Although changing threonine 183 to serine has little effect on the enzymatic properties, changing threonine 183 to alanine or deleting residues 185-187 results in a 50-fold reduction in the intrinsic activity of the alpha subunit alone and in the alpha site activity of the alpha 2 beta 2 complex. The latter two mutations profoundly alter the way in which the alpha subunit modulates the spectral properties and the activities of the wild-type beta subunit. These mutations also eliminate the effects of alpha subunit ligands on the beta subunit. Although the beta subunit ligand, L-serine, greatly stabilizes the wild-type alpha 2 beta 2 complex to dissociation and to proteolysis, L-serine stabilizes the T183A alpha 2 beta 2 complex weakly or not at all. Our findings suggest that the hydroxyl residue at position 183 and the adjacent residues in the alpha subunit loop play critical roles in the reciprocal communication between the alpha and beta subunits in the alpha 2 beta 2 complex. The results also help to explain how the wild-type alpha subunit or ammonium ion modulates the activities of the beta subunit.  相似文献   

12.
Fat digestion in humans requires not only the classical pancreatic lipase but also gastric lipase, which is stable and active despite the highly acidic stomach environment. We report here the structure of recombinant human gastric lipase at 3.0-A resolution, the first structure to be described within the mammalian acid lipase family. This globular enzyme (379 residues) consists of a core domain belonging to the alpha/beta hydrolase-fold family and a "cap" domain, which is analogous to that present in serine carboxypeptidases. It possesses a classical catalytic triad (Ser-153, His-353, Asp-324) and an oxyanion hole (NH groups of Gln-154 and Leu-67). Four N-glycosylation sites were identified on the electron density maps. The catalytic serine is deeply buried under a segment consisting of 30 residues, which can be defined as a lid and belonging to the cap domain. The displacement of the lid is necessary for the substrates to have access to Ser-153. A phosphonate inhibitor was positioned in the active site that clearly suggests the location of the hydrophobic substrate binding site. The lysosomal acid lipase was modeled by homology, and possible explanations for some previously reported mutations leading to the cholesterol ester storage disease are given based on the present model.  相似文献   

13.
Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme responsible for the catabolism of neuromodulatory fatty acid amides, including anandamide and oleamide. FAAH's primary structure identifies this enzyme as a member of a diverse group of alkyl amidases, known collectively as the "amidase signature family". At present, this enzyme family's catalytic mechanism remains poorly understood. In this study, we investigated the catalytic features of FAAH through mutagenesis, affinity labeling, and steady-state kinetic methods. In particular, we focused on the respective roles of three serine residues that are conserved in all amidase signature enzymes (S217, S218, and S241 in FAAH). Mutation of each of these serines to alanine resulted in a FAAH enzyme bearing significant catalytic defects, with the S217A and S218A mutants showing 2300- and 95-fold reductions in k(cat), respectively, and the S241A mutant exhibiting no detectable catalytic activity. The double S217A:S218A FAAH mutant displayed a 230 000-fold decrease in k(cat), supporting independent catalytic functions for these serine residues. Affinity labeling of FAAH with a specific nucleophile reactive inhibitor, ethoxy oleoyl fluorophosphonate, identified S241 as the enzyme's catalytic nucleophile. The pH dependence of FAAH's k(cat) and k(cat)/K(m) implicated a base involved in catalysis with a pK(a) of 7.9. Interestingly, mutation of each of FAAH's conserved histidines (H184, H358, and H449) generated active enzymes, indicating that FAAH does not contain a Ser-His-Asp catalytic triad commonly found in other mammalian serine hydrolytic enzymes. The unusual properties of FAAH identified here suggest that this enzyme, and possibly the amidase signature family as a whole, may hydrolyze amides by a novel catalytic mechanism.  相似文献   

14.
The diversity of function in some enzyme superfamilies shows that during evolution, enzymes have evolved to catalyse different reactions on the same structure scaffold. In this analysis, we examine in detail how enzymes can modify their chemistry, through a comparison of the catalytic residues and mechanisms in 27 pairs of homologous enzymes of totally different functions. We find that evolution is very economical. Enzymes retain structurally conserved residues to aid catalysis, including residues that bind catalytic metal ions and modulate cofactor chemistry. We examine the conservation of residue type and residue function in these structurally conserved residue pairs. Additionally, enzymes often retain common mechanistic steps catalyzed by structurally conserved residues. We have examined these steps in the context of their overall reactions.  相似文献   

15.
The alpha/beta‐hydrolases (ABH) are among the largest structural families of proteins that are found in nature. Although they vary in their sequence and function, the ABH enzymes use a similar acid–base‐nucleophile catalytic mechanism to catalyze reactions on different substrates. Because ABH enzymes are biocatalysts with a wide range of potential applications, protein engineering has taken advantage of their catalytic versatility to develop enzymes with industrial applications. This study is a comprehensive analysis of 40 ABH enzyme families focusing on two identified substructures: the nucleophile zone and the oxyanion zone, which co‐ordinate the catalytic nucleophile and the residues of the oxyanion hole, and independently reported as critical for the enzymatic activity. We also frequently observed an aromatic cluster near the nucleophile and oxyanion zones, and opposite the ligand‐binding site. The nucleophile zone, the oxyanion zone and the residue cluster enriched in aromatic side chains comprise a three‐dimensional structural organization that shapes the active site of ABH enzymes and plays an important role in the enzymatic function by structurally stabilizing the catalytic nucleophile and the residues of the oxyanion hole. The structural data support the notion that the aromatic cluster can participate in co‐ordination of the catalytic histidine loop, and properly place the catalytic histidine next to the catalytic nucleophile.  相似文献   

16.
2-Hydroxy-6-keto-nona-2,4-diene 1,9-dioic acid 5,6-hydrolase (MhpC) from Escherichia coli catalyses the hydrolytic cleavage of the extradiol ring fission product on the phenylpropionate catabolic pathway and is a member of the alpha/beta hydrolase family. The catalytic mechanism of this enzyme has previously been shown to proceed via initial ketonization of the dienol substrate (Henderson, I. M. J., and Bugg, T. D. H. (1997) Biochemistry 36, 12252-12258), followed by stereospecific fragmentation. Despite the implication of an active site serine residue in the alpha/beta hydrolase family, attempts to verify a putative acyl enzyme intermediate by radiochemical trapping methods using a (14)C-labeled substrate yielded a stoichiometry of <1% covalent intermediate, which could be accounted for by nonenzymatic processes. In contrast, incorporation of 5-6% of two atoms of (18)O from H(2)(18)O into succinic acid was observed using the natural substrate, consistent with the reversible formation of a gem-diol intermediate. Furthermore, time-dependent incorporation of (18)O from H(2)(18)O into the carbonyl group of a nonhydrolysable analogue 4-keto-nona-1,9-dioic acid was observed in the presence of MhpC, consistent with enzyme-catalyzed attack of water at the ketone carbonyl. These results favor a catalytic mechanism involving base-catalyzed attack of water, rather than nucleophilic attack of an active site serine. The implication of this work is that the putative active site serine in this enzyme may have an alternative function, for example, as a base.  相似文献   

17.
18.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

19.
Ubiquitin-conjugating enzymes (Ubc) are involved in ubiquitination of proteins in the protein degradation pathway of eukaryotic cells. Ubc transfers the ubiquitin (Ub) molecules to target proteins by forming a thioester bond between their active site cysteine residue and the C-terminal glycine residue of ubiquitin. Here, we report on the NMR assignment and secondary structure of class I human ubiquitin-conjugating enzyme 2b (HsUbc2b). Chemical shift perturbation studies allowed us to map the contact area and binding interface between ubiquitin and HsUbc2b by1H-15N HSQC NMR spectroscopy. The serine mutant of the active site Cys88 of HsUbc2b was employed to obtain a relatively stable covalent ubiquitin complex of HsUbc2b(C88S). Changes in chemical shifts of amide protons and nitrogen atoms induced by the formation of the covalent complex were measured by preparing two segmentally labeled complexes with either ubiquitin or HsUbc2b(C88S)15N-labeled. In ubiquitin, the interaction is primarily sensed by the C-terminal segment Val70 - Gly76, and residues Lys48 and Gln49. The surface area on ubiquitin, as defined by these residues, overlaps partially with the presumed binding site with ubiquitin-activating enzyme (E1). In HsUbc2b, most of the affected residues cluster in the vicinity of the active site, namely, around the active site Cys88 itself, the second alpha-helix, and the flexible loop which connects helices alpha2 and alpha3 and which is adjacent to the active site. An additional site on HsUbc2b for a weak interaction with ubiquitin could be detected in a titration study where the two proteins were not covalently linked. This site is located on the backside of HsUbc2b opposite to the active site and is part of the beta-sheet. The covalent and non-covalent interaction sites are clearly separated on the HsUbc2b surface, while no such clear-cut segregation of the interaction area was observed on ubiquitin.  相似文献   

20.
Serpins inhibit cognate serine proteases involved in a number of important processes including blood coagulation and inflammation. Consequently, loss of serpin function or stability results in a number of disease states. Many of the naturally occurring mutations leading to disease are located within strand 1 of the C beta-sheet of the serpin. To ascertain the structural and functional importance of each residue in this strand, which constitutes the so-called distal hinge of the reactive center loop of the serpin, an alanine scanning study was carried out on recombinant alpha(1)-antitrypsin Pittsburgh mutant (P1 = Arg). Mutation of the P10' position had no effect on its inhibitory properties towards thrombin. Mutations to residues P7' and P9' caused these serpins to have an increased tendency to act as substrates rather than inhibitors, while mutations at P6' and P8' positions caused the serpin to behave almost entirely as a substrate. Mutations at the P6' and P8' residues of the C beta-sheet, which are buried in the hydrophobic core in the native structure, caused the serpin to become highly unstable and polymerize much more readily. Thus, P6' and P8' mutants of alpha(1)-antitrypsin had melting temperatures 14 degrees lower than wild-type alpha(1)-antitrypsin. These results indicate the importance of maintaining the anchoring of the distal hinge to both the inhibitory mechanism and stability of serpins, the inhibitory mechanism being particularly sensitive to any perturbations in this region. The results of this study allow more informed analysis of the effects of mutations found at these positions in disease-associated serpin variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号