首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
2.
Li B  Zhang XQ  Chollet R 《Plant physiology》1996,111(2):497-505
We have previously reported the partial purification of a Ca2+- independent phosphoenolpyruvate carboxylase (PEPC) protein-serine/threonine kinase (PEPC-PK) from illuminated leaves of N-sufficient tobacco (Nicotiana tabacum L.) plants (Y.-H. Wang, R. Chollet [1993] FEBS Lett 328: 215-218). We now report that this C3 PEPC-kinase is reversibly light activated in vivo in a time-dependent manner. As the kinase becomes light activated, the activity and L-malate sensitivity of its target protein increases and decreases, respectively. The light activation of tobacco PEPC-PK is prevented by pretreatment of detached leaves with various photosynthesis and cytosolic protein-synthesis inhibitors. Similarly, specific inhibitors of glutamine synthetase block the light activation of tobacco leaf PEPC-kinase under both photorespiratory and nonphotorespiratory conditions. This striking effect is partially and specifically reversed by exogenous glutamine, whereas it has no apparent effect on the light activation of the maize (Zea mays L.) leaf kinase. Using an in situ "activity-gel" phosphorylation assay, we have identified two major Ca2+-independent PEPC-kinase catalytic polypeptides in illuminated tobacco leaves that have the same molecular masses (approximately 30 and 37 kD) as found in illuminated maize leaves. Collectively, these results indicate that the phosphorylation of PEPC in N-sufficient leaves of tobacco (C3) and maize (C4) is regulated through similar but not identical light-signal transduction pathways.  相似文献   

3.
4.
In vivo pyruvate synthesis by malic enzyme (ME) and pyruvate kinase and in vivo malate synthesis by phosphoenolpyruvate carboxylase and the Krebs cycle were measured by 13C incorporation from [1-13C]glucose into glucose-6-phosphate, alanine, glutamate, aspartate, and malate. These metabolites were isolated from maize (Zea mays L.) root tips under aerobic and hypoxic conditions. 13C-Nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry were used to discern the positional isotopic distribution within each metabolite. This information was applied to a simple precursor-product model that enabled calculation of specific metabolic fluxes. In respiring root tips, ME was found to contribute only approximately 3% of the pyruvate synthesized, whereas pyruvate kinase contributed the balance. The activity of ME increased greater than 6-fold early in hypoxia, and then declined coincident with depletion of cytosolic malate and aspartate. We found that in respiring root tips, anaplerotic phosphoenolpyruvate carboxylase activity was high relative to ME, and therefore did not limit synthesis of pyruvate by ME. The significance of in vivo pyruvate synthesis by ME is discussed with respect to malate and pyruvate utilization by isolated mitochondria and intracellular pH regulation under hypoxia.  相似文献   

5.
In the Xenopus oocyte system mitogen treatment triggers the G(2)/M transition by transiently inhibiting the cAMP-dependent protein kinase (PKA); subsequently, other signal transduction pathways are activated, including the mitogen-activated protein kinase (MAPK) and polo-like kinase pathways. To study the interactions between these pathways, we have utilized a cell-free oocyte extract that carries out the signaling events of oocyte maturation after addition of the heat-stable inhibitor of PKA, PKI. PKI stimulated the synthesis of Mos and activation of both the MAPK pathway and the Plx1/Cdc25C/cyclin B-Cdc2 pathway. Activation of the MAPK pathway alone by glutathione S-transferase (GST)-Mos did not lead to activation of Plx1 or cyclin B-Cdc2. Inhibition of the MAPK pathway in the extract by the MEK1 inhibitor U0126 delayed, but did not prevent, activation of the Plx1 pathway, and inhibition of Mos synthesis by cycloheximide had a similar effect, suggesting that MAPK activation is the only relevant function of Mos. Immunodepletion of Plx1 completely inhibited activation of Cdc25C and cyclin B-Cdc2 by PKI, indicating that Plx1 is necessary for Cdc25C activation. In extracts containing fully activated Plx1 and Cdc25C, inhibition of cyclin B-Cdc2 by p21(Cip1) had no significant effect on either the phosphorylation of Cdc25C or the activity of Plx1. These results demonstrate that maintenance of Plx1 and Cdc25C activity during mitosis does not require cyclin B-Cdc2 activity.  相似文献   

6.
7.
8.

Background

In the cardiovascular system, laminar shear stress (SS) is one of the most important source of endothelial protecting signals. Physical and chemical agents, however, including ionising radiations and anticancer drugs, may injure endothelial cells determining an increase in oxidative stress and genotoxic damage. Whether the SS protective function remains intact in the presence of strong oxidants or DNA damage is currently unclear.

Methods and Results

To investigate this aspect a series of experiments were performed in which HUVEC were exposed to sub-lethal doses of the radio-mimetic compound Bleomycin (Bleo; 10 µg/ml) which generated free radicals (ROS) without significantly compromising cell survival. Remarkably, the application of a SS of 12 dyne/cm2 did not protect endothelial cells but markedly accelerated apoptosis compared to controls kept in static culture and in the presence of Bleo. Experiments with the inducible nitric oxide synthase (iNOS) inhibitor GW274150 significantly reduced the SS-dependent apoptosis indicating that the production of NO was relevant for this effect. At molecular level, the ataxia-telangectasia-mutated (ATM) kinase, the homeodomain-interacting protein kinase-2 (HIPK2) and p53 were found activated along a pro-apoptotic signalling pathway while p21waf1,cip1,sdi1 was prevented from its protective action. RNA interference experiments revealed that HIPK2 and p53 were both important for this process, however, only the forced expression p21waf1,cip1,sdi1 fully restored the SS-dependent pro-survival function.

Conclusions

This study provides the first evidence that, in the presence of genotoxic damage, laminar flow contributes to endothelial toxicity and death and identifies molecular targets potentially relevant in endothelial dysfunction and cardiovascular disease pathogenesis.  相似文献   

9.
10.
11.
12.
13.
To understand the effects of the interaction between Mycoplasma and cells on the host cellular function, it is important to elucidate the influences of infection of cells with Mycoplasma on nuclear enzymes such as DNA Topoisomerase type I (Topo I). Human Topo I participates in DNA transaction processes and is the target of anti-cancer drugs, the camptothecins (CPTs). Here we investigated the mechanism by which infection of human tumor cells with Mycoplasma fermentans affects the activity and expression of cellular Topo I, and the anti-cancer efficacy of CPT. Human cancer cells were infected or treated with live or sonicated M. fermentans and the activity and expression of Topo I was determined. M. fermentans significantly reduced (by 80%) Topo I activity in the infected/treated tumor cells without affecting the level of Topo I protein. We demonstrate that this reduction in enzyme activity resulted from ADP-ribosylation of the Topo I protein by Poly-ADP-ribose polymerase (PARP-1). In addition, pERK was activated as a result of the induction of the MAPK signal transduction pathway by M. fermentans. Since PARP-1 was shown to be activated by pERK, we concluded that M. fermentans modified the cellular Topo I activity by activation of PARP-I via the induction of the MAPK signal transduction pathway. Moreover, the infection of tumor cells with M. fermentans diminished the inhibitory effect of CPT. The results of this study suggest that modification of Topo I activity by M. fermentans may alter cellular gene expression and the response of tumor cells to Topo I inhibitors, influencing the anti-cancer capacity of Topo I antagonists.  相似文献   

14.

Introduction

Trichomonas vaginalis infection is associated with an increased risk of HIV infection in exposed-seronegative women (ESN) despite their unique immune quiescent profile. It is important to understand possible mechanisms, such as recruitment of activated T cells, by which T. vaginalis could facilitate HIV infection in this population.

Methods

We conducted a cross-sectional study exploring the relationships between T. vaginalis infection, inflammatory markers and T cell activation in the cervix of ESN. During scheduled study visits, participants completed a behavioral questionnaire and physical exam, including sexually transmitted infection (STI) screening and collection of endocervical sponge and cytobrush specimens. T cell and monocyte phenotypes were measured in cervical cytobrush specimens using multi-parameter flow cytometry. Cervical sponge specimens were used to measure cytokines (IL-6, IL-8,IL-10, IP-10, RANTES) using Luminex immunoassays and the immune activation marker soluble TNF receptor 1 using ELISA.

Results

Specimens of 65 women were tested. Twenty-one of these women were infected with T. vaginalis. T. vaginalis infection was associated with significantly increased concentrations of IL-8 (1275pg/ml vs. 566pg/ml, p=.02) and sTNFr1 (430 pg/ml vs. 264 pg/ml, p=.005). However, T. vaginalis infection was not associated with increased percent expression of CCR5+ T cells nor increased CD38 and HLADR activation compared to uninfected women. It was also not associated with increased expression of CCR5+ monocytes.

Conclusions

Among ESN T. vaginalis infection is associated with increased levels of genital pro-inflammatory/immune activation markers IL-8 and TNFr1, but was not associated with an increased percentage of activated endocervical T cells along the CD38 and HLADR pathways. Thus, while T.vaginalis infection may result in some reversal of the immune quiescent profile of ESN, enhanced recruitment of activated CD38 and HLADR expressing CD4+ cells into the endocervix may not be part of the mechanism by which Trichomonas infection alters HIV susceptibility in this unique subset of women.  相似文献   

15.
CTRP4 is a unique member of the C1q family, possessing two tandem globular C1q domains. Its physiological function is poorly defined. Here, we show that CTRP4 is an evolutionarily conserved, ∼34-kDa secretory protein expressed in the brain. In human, mouse, and zebrafish brain, CTRP4 expression begins early in development and is widespread in the central nervous system. Neurons, but not astrocytes, express and secrete CTRP4, and secreted proteins form higher-order oligomeric complexes. CTRP4 is also produced by peripheral tissues and circulates in blood. Its serum levels are increased in leptin-deficient obese (ob/ob) mice. Functional studies suggest that CTRP4 acts centrally to modulate energy metabolism. Refeeding following an overnight fast induced the expression of CTRP4 in the hypothalamus. Central administration of recombinant protein suppressed food intake and altered the whole-body energy balance in both chow-fed and high-fat diet-fed mice. Suppression of food intake by CTRP4 is correlated with a decreased expression of orexigenic neuropeptide (Npy and Agrp) genes in the hypothalamus. These results establish CTRP4 as a novel nutrient-responsive central regulator of food intake and energy balance.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号