首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lysine-fermenting Clostridium SB4 is shown to contain a new type of beta-keto acid-degrading enzyme that converts 3-keto-5-aminohexanoate and acetyl-CoA reversibly to L-3-aminobutyryl-CoA and acetoacetate. Following the development of a sensitive radiochemical assay the enzyme was purified 175-fold to about 90% homogeneity in 44% yield. The specific activity of the purified enzyme is 44 IU/mg of protein at 30 degrees. The equilibrium constant for the forward reaction was found to be 0.68 at 30 degrees and pH 7.0, corresponding to a deltaG0' of 0.23 kcal/mol. The enzyme is highly substrate-specific. Of several substrate analogs tested in the forward and back reactions only beta-alanyl-CoA and D-3-aminobutyryl-CoA are utilized about 130% and 1.7% as fast as L-3-aminobutyryl-CoA, respectively. The product formed from beta-alanyl-CoA and acetoacetate is a neutral beta-keto acid, presumably 3-keto-5-aminopentanoic acid; its borohydride reduction product was partially characterized as a hydroxy-amino acid by various chromatographic and ion exchange methods. The activity of the purified enzyme is increased about 5-fold by addition of 0.1 mM Co2+ and to a lesser extent by Mn2+. Activity is inhibited by orthophosphate, thiol reagents, and EDTA; however, exposure of the enzyme to the latter compound prior to addition of Co2+ increases activity, presumably by removing competing divalent cations. Tracer experiments have shown that carbon atoms 1 and 2 of acetoacetate are derived from carbon atoms 1 and 2 of 3-keto-5-aminohexanoate whereas carbon atoms 3 and 4 are derived from acetyl-CoA. The amino acid moiety of 3-aminobutyryl-CoA is derived from carbon atoms 3 to 6 of 3-keto-5-aminohexanoate. Since no evidence for covalent enzyme-substrate intermediates could be obtained by the study of four possible group exchange reactions, a concerted reaction between 3-keto-5-aminohexanoate and acetyl-CoA is considered. The enzyme has a molecular weight of about 97,000 and probably contains four identical subunits. The relatively high specific activity of the enzyme in extracts of Clostridium SB4 indicates it functions in the main pathway of lysine degradation. This relatively stable enzyme provides a convenient and specific method for the quantitative estimation of nanomolar amounts of L- and D-3-aminobutyryl-CoA and beta-alanyl-CoA.  相似文献   

2.
Although the proteins of the lysine fermentation pathway were biochemically characterized more than thirty years ago, the genes encoding the proteins that catalyze three steps of this pathway are still unknown. We combined gene context, similarity of enzymatic mechanisms, and molecular weight comparisons with known proteins to select candidate genes for these three orphan proteins. We used a wastewater metagenomic collection of sequences to find and characterize the missing genes of the lysine fermentation pathway. After recombinant protein production and purification following cloning in Escherichia coli, we demonstrated that these genes (named kdd, kce, and kal) encode a l-erythro-3,5-diaminohexanoate dehydrogenase, a 3-keto-5-aminohexanoate cleavage enzyme, and a 3-aminobutyryl-CoA ammonia lyase, respectively. Because all of the genes of the pathway are now identified, we used this breakthrough to detect lysine-fermenting bacteria in sequenced genomes. We identified twelve bacteria that possess these genes and thus are expected to ferment lysine, and their gene organization is discussed.  相似文献   

3.
Extracts of Pseudomonas B4 grown with l-β-lysine (3,6-diaminohexanoate) as the main energy source are shown to contain a 3-keto-6-acetamidohexanoate cleavage enzyme that converts 3-keto-6-acetamidohexanoate and acetyl · CoA reversibly to 4-acetamidobutyryl · CoA and acetoacetate. The enzyme catalyzes the third step in β-lysine degradation. In unfractionated extracts cleavage enzyme activity is generally assayed spectrophotometrically by coupling the forward reaction with excess 4-acetamidobutyryl · CoA thiolesterase, derived from the same organism, and measuring the rate of CoASH formation by reaction with 5,5-dithiobis(2-nitrobenzoic acid). Enzyme freed of thiolesterase is conveniently assayed by using 4-acetamidobutyryl · CoA and acetoacetate as substrates and measuring acetyl · CoA formation by means of citrate synthase reaction in the presence of 5,5-dithiobis(2-nitrobenzoic acid). The cleavage enzyme has been purified 38-fold to a specific activity of 237 mU/mg. The stoichiometry, equilibrium constant, molecular weight, and various kinetic properties of the enzymatic reaction have been determined. The substrate specificity of the Pseudomonas enzyme differs markedly from that of the analogous 3-keto-5-aminohexanoate cleavage enzyme of Clostridium subterminale strain SB4 and is broader. In the forward reaction 3-ketohexanoate can replace 3-keto-6-acetamidohexanoate, and propionyl · CoA can replace acetyl · CoA as a substrate. In the backward reaction, 4-acetamidobutyryl · CoA can be replaced by any of several CoA thiolesters including the butyryl, valeryl, 4-propionamidobutyryl, 3-acetamidopropionyl, and β-alanyl derivatives, and acetoacetate can be replaced by 2-methylacetoacetate. The products of these reactions have been characterized. Unlike the cleavage enzyme of Clostridium subterminale strain SB4, the Pseudomonas enzyme is not stimulated by Co2+ or Mn2+ and is not inhibited by EDTA, 5,5-dithiobis(2-nitrobenzoic acid), or p-chloromercuribenzoate. Tracer experiments indicate that carbon atoms 1 and 2 of acetoacetate are derived from carbon atoms 1 and 2 of 3-keto-6-acetamidohexanoate, and carbon atoms 3 and 4 of acetoacetate are derived from the acetyl group of acetyl · CoA. The cleavage enzyme is not formed in detectable amounts when Pseudomonas B4 is grown in a peptone-yeast extract medium.  相似文献   

4.
The exponential increase in genome sequencing output has led to the accumulation of thousands of predicted genes lacking a proper functional annotation. Among this mass of hypothetical proteins, enzymes catalyzing new reactions or using novel ways to catalyze already known reactions might still wait to be identified. Here, we provide a structural and biochemical characterization of the 3-keto-5-aminohexanoate cleavage enzyme (Kce), an enzymatic activity long known as being involved in the anaerobic fermentation of lysine but whose catalytic mechanism has remained elusive so far. Although the enzyme shows the ubiquitous triose phosphate isomerase (TIM) barrel fold and a Zn(2+) cation reminiscent of metal-dependent class II aldolases, our results based on a combination of x-ray snapshots and molecular modeling point to an unprecedented mechanism that proceeds through deprotonation of the 3-keto-5-aminohexanoate substrate, nucleophilic addition onto an incoming acetyl-CoA, intramolecular transfer of the CoA moiety, and final retro-Claisen reaction leading to acetoacetate and 3-aminobutyryl-CoA. This model also accounts for earlier observations showing the origin of carbon atoms in the products, as well as the absence of detection of any covalent acyl-enzyme intermediate. Kce is the first representative of a large family of prokaryotic hypothetical proteins, currently annotated as the "domain of unknown function" DUF849.  相似文献   

5.
Nocardia restrictus and N. corallina oxidize the A ring of 4-hydroxy-4-cholesten-3-one and a 3,5-seco-4-nor-3-keto-5-oic acid is formed. The enzymes necessary to this reaction are induced and their biosynthesis is suppressed by chloramphenicol. The catabolism of the aliphatic side chain at C-17 involves a cleavage between C-24 and C-25 and the liberation of propionic acid.  相似文献   

6.
Pathway of lysine degradation in Fusobacterium nucleatum.   总被引:5,自引:3,他引:2       下载免费PDF全文
Lysine was fermented by Fusobacterium nucleatum ATCC 25586 with the formation of about 1 mol each of acetate and butyrate. By the use of [1-14C]lysine or [6-14C]lysine, acetate and butyrate were shown to be derived from both ends of lysine, with acetate being formed preferentially from carbon atoms 1 and 2 and butyrate being formed preferentially from carbon atoms 3 to 6. This indicates that the lysine carbon chain is cleaved between both carbon atoms 2 and 3 and carbon atoms 4 and 5, with the former predominating [1-14C]acetate was also extensively incorporated into butyrate, preferentially into carbon atoms 3 and 4. Cell-free extracts of F. nucleatum were shown to catalyze the reactions of the 3-keto,5-aminohexanoate pathway of lysine degradation, previously described in lysine-fermenting clostridia. The 3-keto,5-aminohexanoate cleavage enzyme was partially purified and shown to have properties much like those of the clostridial enzyme. We conclude that both the pathway and the enzymes of lysine degradation are similar in F. nucleatum and lysine-fermenting clostridia.  相似文献   

7.
GERI-155 is a macrolide antibiotic containing two deoxyhexose molecules which has antimicrobial activities against gram-positive bacteria. The deoxyhexose biosynthetic gene cluster of GERI-155 from Streptomyces sp. GERI-155 genome has now been isolated. Four orf were identified and a putative orf, supposed to code for the dTDP-deoxyglucose epimerase gene, was designated as gerF. gerF was expressed in E. coli using recombinant expression vector pHJ3. The recombinant protein expressed in a soluble form. The enzyme was purified by Ni-affinity column using imidazole buffer as eluents. The molecular mass of the expressed protein correlated with the predicted mass (36,000 Da) deduced from the cloned gene sequence data. The purified enzyme produced maltol from dTDP-4-keto-6-deoxyglucose and it was confirmed that the expressed protein was dTDP-deoxyglucose epimerase catalyzing epimerization of C-3 and C-5 or C-3 of dTDP-4-keto-6-deoxyglucose.  相似文献   

8.
2-amino-5-carboxymuconic 6-semialdehyde is an unstable intermediate in the meta-cleavage pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d. In vitro, this compound is nonenzymatically converted to 2,5-pyridinedicarboxylic acid. Crude extracts of strain 10d grown on 4-amino-3-hydroxybenzoic acid converted 2-amino-5-carboxymuconic 6-semialdehyde formed from 4-amino-3-hydroxybenzoic acid by the first enzyme in the pathway, 4-amino-3-hydroxybenzoate 2,3-dioxygenase, to a yellow compound (epsilonmax = 375 nm). The enzyme in the crude extract carrying out the next step was purified to homogeneity. The yellow compound formed from 4-amino-3-hydroxybenzoic acid by this purified enzyme and purified 4-amino-3-hydroxybenzoate 2,3-dioxygenase in a coupled assay was identified as 2-hydroxymuconic 6-semialdehyde by GC-MS analysis. A mechanism for the formation of 2-hydroxymuconic 6-semialdehyde via enzymatic deamination and nonenzymatic decarboxylation is proposed based on results of spectrophotometric analyses. The purified enzyme, designated 2-amino-5-carboxymuconic 6-semialdehyde deaminase, is a new type of deaminase that differs from the 2-aminomuconate deaminases reported previously in that it primarily and specifically attacks 2-amino-5-carboxymuconic 6-semialdehyde. The deamination step in the proposed pathway differs from that in the pathways for 2-aminophenol and its derivatives.  相似文献   

9.
The carbohydrate catabolism of the bacterium Stenotrophomonas maltophilia Ac (previously named Pseudomonas sp. strain Ac), which is known to convert the unnatural polyol L-glucitol to D-sorbose during growth on the former as the sole source of carbon and energy, was studied in detail. All enzymes operating in a pathway that channels L-glucitol via D-sorbose into compounds of the intermediary metabolism were demonstrated, and for some prominent reactions the products of conversion were identified. D-Sorbose was converted by C-3 epimerization to D-tagatose, which, in turn, was isomerized to D-galactose. D-Galactose was the initial substrate of the De Ley-Doudoroff pathway, involving reactions of NAD-dependent oxidation of D-galactose to D-galactonate, its dehydration to 2-keto-3-deoxy-D-galactonate, and its phosphorylation to 2-keto-3-deoxy-D-galactonate 6-phosphate. Finally, aldol cleavage yielded pyruvate and D-glycerate 3-phosphate as the central metabolic intermediates.  相似文献   

10.
A 3,5-diaminohexanoate-decomposing Brevibacterium   总被引:1,自引:1,他引:0       下载免费PDF全文
An obligately aerobic bacterium that grows on dl-erythro-3, 5-diaminohexanoate as a sole carbon, nitrogen, and energy source was isolated by the enrichment culture method. The organism utilizes only the l isomer by means of an inducible enzyme system. The organism has been tentatively identified as a member of the genus Brevibacterium.  相似文献   

11.
Alam J  Beyer N  Liu HW 《Biochemistry》2004,43(51):16450-16460
L-Colitose is a 3,6-dideoxyhexose found in the O-antigen of Gram-negative lipopolysaccharides. To study the biosynthesis of this unusual sugar, we have cloned and sequenced the L-colitose biosynthetic gene cluster from Yersinia pseudotuberculosis VI. The colD and colC genes in this cluster have been overexpressed and each gene product has been purified and characterized. Our results showed that ColD functions as GDP-4-keto-6-deoxy-D-mannose-3-dehydrase responsible for C-3 deoxygenation of GDP-4-keto-6-deoxy-D-mannose. This enzyme is coenzyme B(6)-dependent and its catalysis is initiated by a transamination step in which pyridoxal 5'-phosphate (PLP) is converted to pyridoxamine 5'-phosphate (PMP) in the presene of L-glutamate. This coenzyme forms a Schiff base with the keto sugar substrate and the resulting adduct undergoes a PMP-mediated beta-dehydration reaction to give a sugar enamine intermediate, which after tautomerization and hydrolysis to release ammonia yields GDP-4-keto-3,6-dideoxy-D-mannose as the product. The combined transamination-deoxygenation activity places ColD in a class by itself. Our studies also established ColC as GDP-L-colitose synthase, which is a bifunctional enzyme catalyzing the C-5 epimerization of GDP-4-keto-3,6-dideoxy-D-mannose and the subsequent C-4 keto reduction of the resulting L-epimer to give GDP-L-colitose. Reported herein are the detailed accounts of the overexpression, purification, and characterization of ColD and ColC. Our studies show that their modes of action in the biosynthesis of GDP-L-colitose represent a new deoxygenation paradigm in deoxysugar biosynthesis.  相似文献   

12.
T M Weigel  V P Miller  H W Liu 《Biochemistry》1992,31(7):2140-2147
CDP-4-keto-6-deoxy-D-glucose-3-dehydrase (E1) purified from Yersinia pseudotuberculosis is a pyridoxamine 5'-phosphate (PMP) dependent enzyme which catalyzes the C-O bond cleavage at C-3 of a CDP-4-keto-6-deoxy-D-glucose substrate, a key step in the formation of 3,6-dideoxyhexoses. Since enzyme E1 utilizes the PMP cofactor in a unique manner, it is essential to establish its role in E1 catalysis. When an incubation was conducted in [18O]H2O, incorporation of 18O into positions C-3 and C-4 of the recovered substrate was observed. This result not only provided the evidence necessary to reveal the reversibility of E1 catalysis but also lent credence to the formation of a delta 3,4-glucoseen intermediate. In view of E1 catalysis being initiated by a C-4' deprotonation of the PMP-substrate complex, the stereochemical course of this step was examined using chemically synthesized (4'S)- and (4'R)-[4'-3H]PMP as probes. Our results clearly demonstrated that the stereochemistry of this deprotonation is pro-S specific, which is in agreement with the stereochemical consistency found with other vitamin B6 phosphate dependent enzymes. The fact that reprotonation at C-4' of the PMP-delta 3,4-glucoseen complex in the reverse direction of E1 catalysis was also found to be pro-S stereospecific strongly suggested that enzyme E1, like most of its counterparts, has the si face of its cofactor-substrate complex exposed to solvent and accessible to active-site catalytic groups as well.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
l-Rhamnose is a component of plant cell wall pectic polysaccharides, diverse secondary metabolites, and some glycoproteins. The biosynthesis of the activated nucleotide-sugar form(s) of rhamnose utilized by the various rhamnosyltransferases is still elusive, and no plant enzymes involved in their synthesis have been purified. In contrast, two genes (rmlC and rmlD) have been identified in bacteria and shown to encode a 3,5-epimerase and a 4-keto reductase that together convert dTDP-4-keto-6-deoxy-Glc to dTDP-beta-l-rhamnose. We have identified an Arabidopsis cDNA that contains domains that share similarity to both reductase and epimerase. The Arabidopsis gene encodes a protein with a predicated molecular mass of approximately 33.5 kD that is transcribed in all tissue examined. The Arabidopsis protein expressed in, and purified from, Escherichia coli converts dTDP-4-keto-6-deoxy-Glc to dTDP-beta-l-rhamnose in the presence of NADPH. These results suggest that a single plant enzyme has both the 3,5-epimerase and 4-keto reductase activities. The enzyme has maximum activity between pH 5.5 and 7.5 at 30 degrees C. The apparent K(m) for NADPH is 90 microm and 16.9 microm for dTDP-4-keto-6-deoxy-Glc. The Arabidopsis enzyme can also form UDP-beta-l-rhamnose. To our knowledge, this is the first example of a bifunctional plant enzyme involved in sugar nucleotide synthesis where a single polypeptide exhibits the same activities as two separate prokaryotic enzymes.  相似文献   

14.
The hyperthermophilic Archaeon Sulfolobus solfataricus metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to 2-keto-3-deoxygluconate. 2-Keto-3-deoxygluconate (KDG) aldolase then catalyzes the cleavage of 2-keto-3-deoxygluconate to glyceraldehyde and pyruvate. The gene encoding glucose dehydrogenase has been cloned and expressed in Escherichia coli to give a fully active enzyme, with properties indistinguishable from the enzyme purified from S. solfataricus cells. Kinetic analysis revealed the enzyme to have a high catalytic efficiency for both glucose and galactose. KDG aldolase from S. solfataricus has previously been cloned and expressed in E. coli. In the current work its stereoselectivity was investigated by aldol condensation reactions between D-glyceraldehyde and pyruvate; this revealed the enzyme to have an unexpected lack of facial selectivity, yielding approximately equal quantities of 2-keto-3-deoxygluconate and 2-keto-3-deoxygalactonate. The KDG aldolase-catalyzed cleavage reaction was also investigated, and a comparable catalytic efficiency was observed with both compounds. Our evidence suggests that the same enzymes are responsible for the catabolism of both glucose and galactose in this Archaeon. The physiological and evolutionary implications of this observation are discussed in terms of catalytic and metabolic promiscuity.  相似文献   

15.
The 6-deoxyhexose L-fucose is an important and characteristic element in glycoconjugates of bacteria (e.g., lipopolysaccharides), plants (e.g., xyloglucans) and animals (e.g., glycolipids, glycoproteins, and oligosaccharides). The biosynthetic pathway of GDP-L-fucose starts with a dehydration of GDP-D-mannose catalyzed by GDP-D-mannose 4,6-dehydratase (Gmd) creating GDP-4-keto-6-deoxymannose which is subsequently converted by the GDP-4-keto-6-deoxy-D-mannose 3,5-epimerase-4-reductase (WcaG; GDP-beta-L-fucose synthetase) to GDP-beta-L-fucose. Both biosynthetic genes gmd and wcaG were cloned from Escherichia coli K12 and the enzymes overexpressed under control of the T7 promoter in the expression vectors pET11a and pET16b, yielding both native and N-terminal His-tag fusion proteins, respectively. The activities of the Gmd and WcaG were analyzed. The enzymatic conversion from GDP-D-mannose to GDP-beta-L-fucose was optimized and the final product was purified. The formation of GDP-beta-L-fucose by the recombinant enzymes was verified by HPLC and NMR analyses. The His-tag fusion variants of the Gmd and WcaG proteins were purified to near homogeneity. The His-tag Gmd recombinant enzyme was inactive, whereas His-tag WcaG showed very similar enzymatic properties relative to the native GDP-beta-L-fucose synthetase. With the purified His-tag WcaG Km and Vmax values, respectively, of 40 microM and 23 nkat/mg protein for the substrate GDP-4-keto-6-deoxy-D-mannose and of 21 microM and 10 nkat/mg protein for the cosubstrate NADPH were obtained; a pH optimum of 7.5 was determined and the enzyme was stimulated to equal extend by the divalent cations Mg2+ and Ca2+. The Gmd enzyme showed a strong feedback inhibition by GDP-beta-L-fucose.  相似文献   

16.
Of eleven substituted phenoxyacetic acids tested, only three (2,4-dichloro-, 4-chloro-2-methyl- and 2-methylphenoxyacetic acid) served as growth substrates for Alcaligenes eutrophus JMP 134. Whereas only one enzyme seems to be responsible for the initial cleavage of the ether bond, there was evidence for the presence of three different phenol hydroxylases in this strain. 3,5-Dichlorocatechol and 5-chloro-3-methylcatechol, metabolites of the degradation of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid, respectively, were exclusively metabolized via the ortho-cleavage pathway. 2-Methylphenoxyacetic acid-grown cells showed simultaneous induction of meta- and ortho-cleavage enzymes. Two catechol 1,2-dioxygenases responsible for ortho-cleavage of the intermediate catechols were partially purified and characterized. One of these enzymes converted 3,5-dichlorocatechol considerably faster than catechol or 3-chlorocatechol. A new enzyme for the cycloisomerisation of muconates was found, which exhibited high activity against the ring-cleavage products of 3,5-dichlorocatechol and 4-chlorocatechol, but low activities against 2-chloromuconate and muconate.Non-standard abbreviations MCPA 4-chloro-2-methylphenoxyacetic acid - 2MPA 2-methylphenoxyacetic acid - PA phenoxyacetic acid  相似文献   

17.
Degradation of 1,2-dichlorobenzene by a Pseudomonas sp.   总被引:9,自引:3,他引:6       下载免费PDF全文
A Pseudomonas sp. that was capable of growth on 1,2-dichlorobenzene (o-DCB) or chlorobenzene as a sole source of carbon and energy was isolated by selective enrichment from activated sludge. The initial steps involved in the degradation of o-DCB were investigated by isolation of metabolites, respirometry, and assay of enzymes in cell extracts. Extracts of o-DCB-grown cells converted radiolabeled o-DCB to 3,4-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene (o-DCB dihydrodiol). 3,4-Dichlorocatechol and o-DCB dihydrodiol accumulated in culture fluids of cells exposed to o-DCB. The results suggest that o-DCB is initially converted by a dioxygenase to a dihydrodiol, which is converted to 3,4-dichlorocatechol by an NAD+-dependent dehydrogenase. Ring cleavage of 3,4-dichlorocatechol is by a catechol 1,2-oxygenase to form 2,3-dichloro-cis,cis-muconate. Preliminary results indicate that chloride is eliminated during subsequent lactonization of the 2,3-dichloro-cis,cis-muconate, followed by hydrolysis to form 5-chloromaleylacetic acid.  相似文献   

18.
Degradation of 1,2-dichlorobenzene by a Pseudomonas sp   总被引:6,自引:0,他引:6  
A Pseudomonas sp. that was capable of growth on 1,2-dichlorobenzene (o-DCB) or chlorobenzene as a sole source of carbon and energy was isolated by selective enrichment from activated sludge. The initial steps involved in the degradation of o-DCB were investigated by isolation of metabolites, respirometry, and assay of enzymes in cell extracts. Extracts of o-DCB-grown cells converted radiolabeled o-DCB to 3,4-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene (o-DCB dihydrodiol). 3,4-Dichlorocatechol and o-DCB dihydrodiol accumulated in culture fluids of cells exposed to o-DCB. The results suggest that o-DCB is initially converted by a dioxygenase to a dihydrodiol, which is converted to 3,4-dichlorocatechol by an NAD+-dependent dehydrogenase. Ring cleavage of 3,4-dichlorocatechol is by a catechol 1,2-oxygenase to form 2,3-dichloro-cis,cis-muconate. Preliminary results indicate that chloride is eliminated during subsequent lactonization of the 2,3-dichloro-cis,cis-muconate, followed by hydrolysis to form 5-chloromaleylacetic acid.  相似文献   

19.
Deoxysugars are critical structural elements for the bioactivity of many natural products. Ongoing work on elucidating a variety of deoxysugar biosynthetic pathways has paved the way for manipulation of these pathways for the generation of structurally diverse glycosylated natural products. In the course of this work, the biosynthesis of d-mycaminose in the tylosin pathway of Streptomyces fradiae was investigated. Attempts to reconstitute the entire mycaminose biosynthetic machinery in a heterologous host led to the discovery of a previously overlooked gene, tyl1a, encoding an enzyme thought to convert TDP-4-keto-6-deoxy-d-glucose to TDP-3-keto-6-deoxy-d-glucose, a 3,4-ketoisomerization reaction in the pathway. Tyl1a has now been overexpressed, purified, and assayed, and its activity has been verified by product analysis. Incubation of Tyl1a and the C-3 aminotransferase TylB, the next enzyme in the pathway, produced TDP-3-amino-3,6-dideoxy-d-glucose, confirming that these two enzymes act sequentially. Steady state kinetic parameters of the Tyl1a-catalyzed reaction were determined, and the ability of Tyl1a and TylB to process a C-2 deoxygenated substrate and a CDP-linked substrate was also demonstrated. Enzymes catalyzing 3,4-ketoisomerization of hexoses represent a new class of enzymes involved in unusual sugar biosynthesis. The fact that Tyl1a exhibits a relaxed substrate specificity holds potential for future deoxysugar biosynthetic engineering endeavors.  相似文献   

20.
Inhibition of microbial cholesterol oxidases by dimethylmorpholines   总被引:2,自引:0,他引:2  
Cholesterol oxidase is a potentially important enzyme in steroid transformations, catalysing the conversion of 3-hydroxy-5-ene steroids to 3-keto-4-ene derivatives via a 3-keto-5-ene intermediate. Morpholine derivatives, especially fenpropimorph and tridemorph, were found to block selectively the isomerisation activity of cholesterol oxidases isolated from Nocardia erythropolis, Streptomyces sp., Pseudomonas testosteroni and Schizophyllum commune. These enzymes differ strongly in physical characteristics and catalytic behaviour. The effectiveness of the inhibitors varied with the cholesterol oxidase tested. Fenpropimorph was most effective with each of the 4 enzymes, 50 mg/l inhibiting about 50% of the enzyme activity. Inhibition was instantaneous and followed a reversible competitive mechanism in Streptomyces sp. and a reversible non-competitive mechanism in Nocardia erythropolis and Schizophyllum commune. An irreversible type of inhibition was observed for P. testosteroni cholesterol oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号