首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Crystal structure-based mutagenesis studies on cytochrome P-450(BM-3) have confirmed the importance of R47, Y51, and F87 in substrate binding. Replacing F87 has profound effects on regioselectivity. In contrast, changing either R47 or Y51 alone to other residues results in limited impact on substrate binding affinity. Mutating both, however, leads to large changes. Substrate-induced protein conformational changes not only lead to specific substrate binding in the heme domain, but also affect interactions with the FMN domain. Unlike the microsomal P-450 reductase, the FMN semiquinone is the active electron donor to the heme iron in P-450(BM-3). The crystal structure of P-450(BM-3) heme/FMN bidomain provides important insights into why the FMN semiquinone is the preferred electron donor to the heme as well as how substrate-induced structural changes possibly affect the FMN and heme domain-domain interaction.  相似文献   

2.
NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH*/FMNH2 couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.  相似文献   

3.
Bacillus megaterium cytochrome P-450BM-3 and its two functional domains, the heme and flavin domains, have been purified and characterized using an Escherichia coli expression system. Recombinant P-450BM-3 behaves both spectrally and enzymatically the same as the enzyme produced from the natural host, B. megaterium, and another E. coli system recently described (Bouddupalli, S. S., Estabrook, R. W., and Peterson, J. A. (1990) J. Biol. Chem. 265, 4233-4239). Reduction of the flavins in P-450BM-3 domain with NADPH appears to be very similar to microsomal P-450 reductases where two reducing equivalents are consumed to fully reduce the FMN while the FAD is converted to the semiquinone in an one electron reduction. NADPH reduction of the heme occurs only in the presence of substrate suggesting, by analogy with the cytochrome P-450CAM system, a possible increase in iron redox potential of the heme upon substrate binding which facilitates electron transfer from the flavins to the heme. The flavin domain retains a high level of cytochrome c reductase activity and also reacts with NADPH to give a 3-electron reduced product. The heme domain retains the ability to bind substrate and generates the characteristic 450-nm absorption band upon reduction in the presence of CO. The heme domain has been crystallized and a preliminary set of x-ray diffraction data obtained.  相似文献   

4.
In nitric-oxide synthase (NOS) the FMN can exist as the fully oxidized (ox), the one-electron reduced semiquinone (sq), or the two-electron fully reduced hydroquinone (hq). In NOS and microsomal cytochrome P450 reductase the sq/hq redox potential is lower than that of the ox/sq couple, and hence it is the hq form of FMN that delivers electrons to the heme. Like NOS, cytochrome P450BM3 has the FAD/FMN reductase fused to the C-terminal end of the heme domain, but in P450BM3 the ox/sq and sq/hq redox couples are reversed, so it is the sq that transfers electrons to the heme. This difference is due to an extra Gly residue found in the FMN binding loop in NOS compared with P450BM3. We have deleted residue Gly-810 from the FMN binding loop in neuronal NOS (nNOS) to give Delta G810 so that the shorter binding loop mimics that in cytochrome P450BM3. As expected, the ox/sq redox potential now is lower than the sq/hq couple. Delta G810 exhibits lower NO synthase activity but normal levels of cytochrome c reductase activity. However, unlike the wild-type enzyme, the cytochrome c reductase activity of Delta G810 is insensitive to calmodulin binding. In addition, calmodulin binding to Delta G810 does not result in a large increase in FMN fluorescence as in wild-type nNOS. These results indicate that the FMN domain in Delta G810 is locked in a unique conformation that is no longer sensitive to calmodulin binding and resembles the "on" output state of the calmodulin-bound wild-type nNOS with respect to the cytochrome c reduction activity.  相似文献   

5.
Cytochrome P450s are a superfamily of heme containing enzymes that use molecular oxygen and electrons from reduced nicotinamide cofactors to monooxygenate organic substrates. The fatty acid hydroxylase P450BM-3 has been particularly widely studied due to its stability, high activity, similarity to mammalian P450s, and presence of a cytochrome P450 reductase domain that allows the enzyme to directly receive electrons from NADPH without a requirement for additional redox proteins. We previously characterized the substrate N-palmitoylglycine, which found extensive use in studies of P450BM-3 due to its high affinity, high turnover number, and increased solubility as compared to fatty acid substrates. Here, we report that even higher affinity substrates can be designed by acylation of other amino acids, resulting in P450BM-3 substrates with dissociation constants below 100 nM. N-Palmitoyl-l-leucine and N-palmitoyl-l-methionine were found to have the highest affinity, with dissociation constants of less than 8 nM and turnover numbers similar to palmitic acid and N-palmitoylglycine. The interactions of the amino acid side chains with a hydrophobic pocket near R47, as revealed by our crystal structure determination of N-palmitoyl-l-methionine bound to the heme domain of P450BM-3, appears to be responsible for increasing the affinity of substrates. The side chain of R47, previously shown to be important in interactions with negatively charged substrates, does not interact strongly with N-palmitoyl-l-methionine and is found positioned at the enzyme-solvent interface. These are the tightest binding substrates for P450BM-3 reported to date, and the affinity likely approaches the maximum attainable affinity for the binding of substrates of this size to P450BM-3.  相似文献   

6.
Nitric oxide synthase (NOS) is the enzyme responsible for the conversion of L-arginine to L-citrulline and nitric oxide. Dimerization of the enzyme is an absolute requirement for catalytic activity. Each NOS monomer contains an N-terminal heme-binding domain and a C-terminal reductase domain. It is unclear how the reductase domain is involved in controlling dimerization and whether dimer formation alone controls enzyme activity. Our initial studies demonstrated that no dimerization or activity could be detected when the reductase domain of rat neuronal NOS (nNOS) was expressed either separately or in combination with the heme domain. To further evaluate the reductase domain, a set of expression plasmids was created by replacing the reductase domain of nNOS with other electron-transport proteins, thereby creating nNOS chimeric fusion proteins. The rat nNOS heme domain was linked with either cytochrome P450 reductase, adrenodoxin reductase, or the reductase domain from Bacillus megaterium cytochrome P450, BM-3. All the chimeric enzymes retained the ability to dimerize but were unable to metabolize L-arginine (<8% of wildtype activity levels), indicating that dimerization alone is insufficient to produce an active enzyme. Because the greatest regions of homology between electron-transport proteins are in the flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and nicotinamide adenine dinucleotide phosphate (NADPH) binding regions, we produced truncation mutants within the nNOS reductase domain to investigate the role of these sequences in the ability of nNOS to dimerize and to metabolize L-arginine. The results demonstrated that the deletion of the final 56 amino acids or the NADPH-binding region had no effect on dimerization but produced an inactive enzyme. However, when the FAD-binding site (located between amino acids 920 and 1161) was deleted, both activity and dimerization were abolished. These results implicate sequences within the FAD-binding site as essential for nNOS dimerization but sequences within amino acids 1373 to 1429 as essential for activity.  相似文献   

7.
In a previous publication (Narhi, L. O. and Fulco, A. J. (1986) J. Biol. Chem. 261, 7160-7169) we described the characterization of a soluble 119,000-dalton P-450 cytochrome (P-450BM-3) that was induced by barbiturates in Bacillus megaterium. This single polypeptide contained 1 mol each of FAD and FMN/mol of heme and, in the presence of NADPH and O2, catalyzed the oxygenation of long-chain fatty acids without the aid of any other protein. We have now utilized limited trypsin proteolysis in the presence of substrate to cleave P-450BM-3 into two polypeptides (domains) of about 66,000 and 55,000 daltons. The 66-kDa domain contains both FAD and FMN but no heme, reduces cytochrome c in the presence of NADPH, and is derived from the C-terminal portion of P-450BM-3. The 55-kDa domain is actually a mixture of three discrete peptides (T-I, T-II, and T-III) separable by high performance liquid chromatography. All three contain heme and show a P-450 absorption peak in the presence of CO and dithionite. The major component, T-I (Mr = 55 kDa), binds fatty acid substrate and has an N-terminal amino acid sequence identical to that of intact P-450BM-3, an indication that this domain constitutes the N-terminal portion of the 119-kDa protein. T-II (54 kDa) is the same as T-I except that it is missing the first nine N-terminal amino acids and does not bind substrate. T-III (Mr = 53.5 kDa) has lost the first 15 N-terminal residues and does not bind substrate. Since trypsin digestion of P-450BM-3 carried out in the absence of substrate yields T-II and T-III but no T-I, it appears that 1 or more residues of the first nine N-terminal amino acids of this protein are intimately involved in substrate binding. Although both the heme- and flavin-containing tryptic peptides retain their original half-reactions, fatty acid monooxygenase activity cannot be reconstituted after proteolysis, and the two domains, once separated, show no affinity for each other. In most respects, the reductase domain of P-450BM-3 more closely resembles the mammalian microsomal P-450 reductases than it does any known bacterial protein.  相似文献   

8.
The nitric-oxide synthases (NOSs) are comprised of an oxygenase domain and a reductase domain bisected by a calmodulin (CaM) binding region. The NOS reductase domains share approximately 60% sequence similarity with the cytochrome P450 oxidoreductase (CYPOR), which transfers electrons to microsomal cytochromes P450. The crystal structure of the neuronal NOS (nNOS) connecting/FAD binding subdomains reveals that the structure of the nNOS-connecting subdomain diverges from that of CYPOR, implying different alignments of the flavins in the two enzymes. We created a series of chimeric enzymes between nNOS and CYPOR in which the FMN binding and the connecting/FAD binding subdomains are swapped. A chimera consisting of the nNOS heme domain and FMN binding subdomain and the CYPOR FAD binding subdomain catalyzed significantly increased rates of cytochrome c reduction in the absence of CaM and of NO synthesis in its presence. Cytochrome c reduction by this chimera was inhibited by CaM. Other chimeras consisting of the nNOS heme domain, the CYPOR FMN binding subdomain, and the nNOS FAD binding subdomain with or without the tail region also catalyzed cytochrome c reduction, were not modulated by CaM, and could not transfer electrons into the heme domain. A chimera consisting of the heme domain of nNOS and the reductase domain of CYPOR reduced cytochrome c and ferricyanide at rates 2-fold higher than that of native CYPOR, suggesting that the presence of the heme domain affected electron transfer through the reductase domain. These data demonstrate that the FMN subdomain of CYPOR cannot effectively substitute for that of nNOS, whereas the FAD subdomains are interchangeable. The differences among these chimeras most likely result from alterations in the alignment of the flavins within each enzyme construct.  相似文献   

9.
P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does not effectively inhibit P450BM-3. Omega-imidazolyl fatty acids have previously been found to be weak inhibitors of the enzyme and show some unusual cooperativity with the substrate lauric acid. We set out to improve the properties of these inhibitors by attaching the omega-imidazolyl fatty acid to the nitrogen of an amino acid group, a tactic that we used previously to increase the potency of substrates. The resulting inhibitors were significantly more potent than their parent compounds lacking the amino acid group. A crystal structure of one of the new inhibitors bound to the heme domain of P450BM-3 reveals that the mode of interaction of the amino acid group with the enzyme is different from that previously observed for acyl amino acid substrates. Further, required movements of residues in the active site to accommodate the imidazole group provide an explanation for the low affinity of imidazole itself. Finally, the previously observed cooperativity with lauric acid is explained by a surprisingly open substrate-access channel lined with hydrophobic residues that could potentially accommodate lauric acid in addition to the inhibitor itself.  相似文献   

10.
Although the reductase domain of cytochrome P450 BM3 (BMR) catalyzes the reduction of cytochrome c and 2,6-dichlorophenolindophenol, we observed a catalytically independent loss of activity. By varying the incubation time for the enzyme prior to reaction initiation, we measured an inactivation rate of 0.22 min(-1). We hypothesized that either an active BMR dimer dissociates to an inactive monomer or BMR undergoes denaturation. We were not able to trap or destabilize a dimer, and BMR inactivation proved to be irreversible. Addition of excess FMN only slightly decreased the rate of inactivation from 0.22 to 0.13 min(-1), indicating inactivation likely does not reflect loss of flavin. When inactivation rates as a function of temperature were fit to the Arrhenius equation, the energy required to inactivate BMR was 9.9 kcal mol(-1)--equivalent to a few hydrogen bonds. The potential instability of BMR under certain conditions raises concerns for the use of BMR as a model or surrogate P450 reductase in other systems.  相似文献   

11.
Microsomal P450s catalyze the monooxygenation of a large variety of hydrophobic compounds, including drugs, steroids, carcinogens, and fatty acids. The interaction of microsomal P450s with their electron transfer partner, NADPH-P450 reductase, during the transfer of electrons from NADPH to P450, for oxygen activation, may be important in regulating this enzyme system. Highly purified Bacillus megaterium P450BM-3 is catalytically self-sufficient and contains both the reductase and P450 domains on a single polypeptide chain of approximately 120,000 Da. The two domains of P450BM-3 appear to be analogous in their function and homologous in their sequence to the microsomal P450 system components. FAD, FMN, and heme residues are present in equimolar amounts in purified P450BM-3 and, therefore, this protein could potentially accept five electron equivalents per mole of enzyme during a reductive titration. The titration of P450BM-3 with sodium dithionite under a carbon monoxide atmosphere was complete with the addition of the expected five electron equivalents. The intermediate spectra indicate that the heme iron is reduced first, followed by the flavin residues. Titration of the protein with the physiological reductant, NADPH, also required approximately five electron equivalents when the reaction was performed under an atmosphere of carbon monoxide. Under an atmosphere of argon and in the absence of carbon monoxide, one of the flavin groups was reduced prior to the reduction of the heme group. The titration behavior of P450BM-3 with NADPH was surprising because no spectral changes characteristic of flavin semiquinone intermediates were observed. The results of the titration with NADPH can only be explained if (a) there was "rapid" intermolecular electron transfer between P450BM-3 molecules, (b) there is no kinetic barrier to the reduction of P450 by the one-electron-reduced form of the reductase, and (c) the "air-stable semiquinone" form of the reductase does not accumulate in this complex multidomain enzyme.  相似文献   

12.
NADPH-cytochrome P450 reductase (CPR), a diflavin reductase, plays a key role in the mammalian P450 mono-oxygenase system. In its crystal structure, the two flavins are close together, positioned for interflavin electron transfer but not for electron transfer to cytochrome P450. A number of lines of evidence suggest that domain motion is important in the action of the enzyme. We report NMR and small-angle x-ray scattering experiments addressing directly the question of domain organization in human CPR. Comparison of the 1H-15N heteronuclear single quantum correlation spectrum of CPR with that of the isolated FMN domain permitted identification of residues in the FMN domain whose environment differs in the two situations. These include several residues that are solvent-exposed in the CPR crystal structure, indicating the existence of a second conformation in which the FMN domain is involved in a different interdomain interface. Small-angle x-ray scattering experiments showed that oxidized and NADPH-reduced CPRs have different overall shapes. The scattering curve of the reduced enzyme can be adequately explained by the crystal structure, whereas analysis of the data for the oxidized enzyme indicates that it exists as a mixture of approximately equal amounts of two conformations, one consistent with the crystal structure and one a more extended structure consistent with that inferred from the NMR data. The correlation between the effects of adenosine 2′,5′-bisphosphate and NADPH on the scattering curve and their effects on the rate of interflavin electron transfer suggests that this conformational equilibrium is physiologically relevant.  相似文献   

13.
Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR) to all microsomal cytochrome P450s (CYPs). Our hypothesis is that tight coupling of motion with enzyme chemistry can signal "ready and waiting" states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals "ready and waiting" conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron transfer along complex redox chains.  相似文献   

14.
p450 RhF from Rhodococcus sp. NCIMB 9784 is the first example of a new class of cytochrome p450 in which electrons are supplied by a novel, FMN- and Fe/S-containing, reductase partner in a fused arrangement. We have previously cloned the gene encoding the enzyme and shown it to comprise an N-terminal p450 domain fused to a reductase domain that displays similarity to the phthalate family of oxygenase reductase proteins. A reductase of this type had never previously been reported to interact with a cytochrome p450. In this report we describe the purification and partial characterization of p450 RhF. We show that the enzyme is self-sufficient in catalyzing the O-dealkylation of 7-ethoxycoumarin. The p450 RhF catalyzed O-dealkylation of 7-ethoxycoumarin is inhibited by several compounds that are known inhibitors of cytochrome p450. Presteady state kinetic analysis indicates that p450 RhF shows a 500-fold preference for NAPDH over NADH in terms of Kd value (6.6 microm versus 3.7 mm, respectively). Potentiometric studies show reduction potentials of -243 mV for the two-electron reduction of the FMN and -423 mV for the heme (in the absence of substrate).  相似文献   

15.
The NADPH cytochrome P450 reductase (CPR), a diflavin enzyme, catalyzes the electron transfer (ET) from NADPH to the substrate P450. The crystal structures of mammalian and yeast CPRs show a compact organization for the two domains containing FMN (flavin mononucleotide) and FAD (flavin adenine dinucleotide), with a short interflavin distance consistent with fast ET from the NADPH-reduced FAD to the second flavin FMN. This conformation, referred as "closed", contrasts with the alternative opened or extended domain arrangements recently described for partially reduced or mutant CPR. Internal domain flexibility in this enzyme is indeed necessary to account for the apparently conflicting requirements of having FMN flavin accessible to both the FAD and the substrate P450 at the same interface. However, how interdomain dynamics influence internal and external ETs in CPR is still largely unknown. Here, we used NMR techniques to explore the global, domain-specific and residue-specific structural and dynamic properties of the nucleotide-free human CPR in solution in its oxidized state. Based on the backbone resonance assignment of this 70-kDa protein, we collected residue-specific (15)N relaxation and (1)H-(15)N residual dipolar couplings. Surprisingly and in contrast with previous studies, the analysis of these NMR data revealed that the CPR exists in a unique and predominant conformation that highly resembles the closed conformation observed in the crystalline state. Based on our findings and the previous observations of conformational equilibria of the CPR in partially reduced states, we propose that the large-scale conformational transitions of the CPR during the catalytic cycle are tightly controlled to ensure optimal electron delivery.  相似文献   

16.
Cytochrome P450BM-3 is a self-sufficient bacterial protein containing three naturally fused domains which bind either heme, FMN, or FAD. Resolution of protein and FMN from the isolated FMN-containing domain of cytochrome P450Betamicro-3 was accomplished using trichloroacetic acid. The apoprotein thus prepared was shown to rebind FMN to regenerate the original holoprotein as indicated by both spectroscopy and activity measurements. To better understand how the protein/flavin interaction might contribute to reactivity, the association process was studied in detail. Fluorescence quenching was used to measure a dissociation constant of the flavin-protein complex of 31 nM, comparable to FMN-containing proteins of similar reactivity and higher than that of flavodoxins. Stopped-flow kinetics were performed, and a multistep binding process was indicated, with an initial k(on) value of 1.72 x 10(5) M(-)(1) s(-)(1). Preparation of the apoprotein allowed substitution of flavin analogues for the native FMN cofactor using 8-chloro-FMN and 8-amino-FMN. Both were found to bind efficiently to the protein with only minor variations in affinity. Reductive titrations established that, as in the native FMN-containing FMN-binding domain, the 8-amino-FMN-substituted domain does not produce a stable one-electron-reduced species during titration with sodium dithionite. The 8-chloro-FMN-substituted domain, however, had sufficiently altered redox properties to form a stable red anionic semiquinone. The 8-chloro-FMN-substituted FMN-binding domain was shown in reconstituted systems to retain most of the cytochrome c reductase activity of the native domain but only a very small amount of palmitic acid hydroxylase activity. The 8-amino-FMN-substituted FMN-binding domain showed no palmitic acid hydroxylase activity and only 30% of the native cytochrome c reductase activity, demonstrating the importance of thermodynamics to the mechanism of this protein.  相似文献   

17.
Two catalytic domains, bearing FMN and FAD cofactors, joined by a connecting domain, compose the core of the NADPH cytochrome P450 reductase (CPR). The FMN domain of CPR mediates electron shuttling from the FAD domain to cytochromes P450. Together, both enzymes form the main mixed‐function oxidase system that participates in the metabolism of endo‐ and xenobiotic compounds in mammals. Available CPR structures show a closed conformation, with the two cofactors in tight proximity, which is consistent with FAD‐to‐FMN, but not FMN‐to‐P450, electron transfer. Here, we report the 2.5 Å resolution crystal structure of a functionally competent yeast–human chimeric CPR in an open conformation, compatible with FMN‐to‐P450 electron transfer. Comparison with closed structures shows a major conformational change separating the FMN and FAD cofactors from 86 Å.  相似文献   

18.
Within the Bacillus subtilis genome sequencing project, two monooxygenases (CYP102A2 and CYP102A3) were discovered which revealed a similarity of 76% to the well-known cytochrome P450 BM-3 (CYP102A1) of Bacillus megaterium. All enzymes are natural fusion proteins consisting of a heme domain and a reductase domain. We here report the cloning, expression and characterization of B. subtilis enzyme CYP102A3. The substrate specificity of this enzyme is similar to that of B. megaterium CYP102A1, which hydroxylates medium-chain fatty acids in subterminal positions. A double mutant was prepared that hydroxylates a number of other substrates, which do not bear any resemblance to the natural substrate of this enzyme family.  相似文献   

19.
The flavodoxin-like domain, missing in the three-dimensional structure of the monomeric, simplified model of the Escherichia coli sulfite reductase flavoprotein component (SiR-FP), has now been expressed independently. This 168 amino acid protein was named SiR-FP18 with respect to its native molecular weight and represents the FMN-binding domain of SiR-FP. This simplified biological object has kept the main characteristics of its counterpart in the native protein. It could incorporate FMN exclusively and stabilize a neutral air-stable semiquinone radical. Both the radical and the fully reduced forms of SiR-FP18 were able to transfer their electrons to DCPIP or cytochrome c quantitatively. SiR-FP18 was able to form a highly stable complex with SiR-HP, the hemoprotein component of the sulfite reductase containing an iron-sulfur cluster coupled to a siroheme. In agreement with the postulated catalytic cycle of SiR-FP, only the fully reduced form of SiR-FP18 could transfer one electron to SiR-HP, the transferred electron being localized exclusively on the heme. As isolated SiR-FP18 has kept the main characteristics of the FMN-binding domain of the native protein, a structural analysis by NMR was performed in order to complete the partial structure obtained previously. Structural modeling was performed using sequence homologues, cytochrome P450 reductase (CPR; 29% identity) and bacterial cytochrome P450 (P450-BM3; 26% identity), as conformational templates. These sequences were anchored using common secondary structural elements identified from heteronuclear NMR data measured on the protein backbone. The resulting structural model was validated, and subsequently refined using residual (C(alpha)-C', N-H(N), and C'-H(N)) dipolar couplings measured in an anisotropic medium. The overall fold of SiR-FP18 is very similar to that of bacterial flavodoxins and of the flavodoxin-like domain in CPR or P450-BM3.  相似文献   

20.
Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k(cat) of ~25 min(-1) was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP(2)H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP(2)H but not D(2)O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号