首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the postnatal development of morphological and vocal features in a free-ranging population of the Asian particolored bat, Vespertilio sinensis. There were no significant differences in postnatal growth rates between males and females on the basis of morphological changes. Body mass and forearm length followed a linear pattern of growth until 28 days of age at mean growth rates of 0.38 g/day and 1.15 mm/day, respectively and thereafter increased slowly. The length of total epiphyseal gap of the fourth metacarpal–phalangeal joint initially showed a linear increase for up to 16 days, followed by a linear decrease until day 46 at a mean rate of 0.18 mm/day. When forearm length was used in combination with changes in total epiphyseal gap length, we derived reliable age estimation equations for the 1–46 day age range. Of the three nonlinear growth models (logistic, Gompertz, and von Bertalanffy), the von Bertalanffy and logistic equations provided the best fit to the empirical curves for body mass and forearm length, respectively. Studies of vocal development showed that infants could emit short calls as precursors of echolocation calls after birth. Isolation calls and precursors of echolocation calls were both characterized by multiple harmonics. We observed a systematic increase in the value of the starting frequency without a significant change in the terminal frequency over the 3 week period of development. In addition, the duration of isolation calls increased until day 4 and then decreased, whereas, the duration of precursors of echolocation calls decreased continuously to reach a stable level.  相似文献   

2.
We studied the postnatal development of wing morphology and echolocation calls during flight in a free-ranging population of the big-footed bat, Myotis macrodactylus, using the mark-recapture methodology. Young bats were reluctant to move until 7 days of age and started fluttering at a mean age of 10 days. The wingspan and wing area of pups followed a linear pattern of growth until 22 days of age, by which time the young bats exhibited flapping flight, with mean growth rates of 0.62 mm/day and 3.15 mm2/day, for wingspan and area, respectively, after which growth rates decreased. Pups achieved sustained flight at 40 days of age. Of the three nonlinear growth models (logistic, Gompertz, and von Bertalanffy), the logistic equation provided the best fit to the empirical curves for wingspan and wing area. Neonates emitted long echolocation calls with multiple harmonics. The duration of calls decreased significantly between flutter (19 days) and flight (22 days) stages. The peak and start frequency of calls increased significantly over the 3-week period of development, but the terminal frequency did not change significantly over the development period.  相似文献   

3.
This study documents the postnatal growth, age estimation and development of the foraging behaviour of the fulvous fruit batRousettus leschenaulti under captive conditions. At birth, the young were naked and pink with closed eyes and folded pinnae. By day four of age, their eyes had opened and the pups began to move. The mean length of forearm in 5-day-old pups was 24.9 mm and body mass was 10.8 g, equivalent to 32.3% and 14.2% of the values from postpartum females. The length of forearm and body mass increased linearly until 45 and 50 days, respectively, and thereafter maintained an apparent stability. The epiphyseal gap of the fourth metacarpal-phalangeal joint increased until 15 days, then decreased linearly until 75 days and thereafter closed. Age was estimated quantitatively, based on linear changes observed in the length of the forearm and epiphyseal gap. Pups began to roost separately, but adjacent to their mothers when 30 days old and flew clumsily when they were about 40 days old. After attaining clumsy flight, the young bats made independent foraging attempts feebly by biting and licking small fruit pieces. Young bats were engaged in suckling as well as ingesting fruits when they were about 50 days old. Between 55 and 65 days, they flew well and fed on fruits. At the age of 75 days, the young bats were completely weaned and at two months, their foraging behaviour was similar to that of their mothers. There was no significant difference in the growth pattern of the young maintained in captivity compared with those under natural conditions.  相似文献   

4.
1997 年5 ~9 月,采用标志重捕法对中华山蝠的生长发育进行研究,共观察幼蝠388 只次(雄性184 只次,雌性204 只次),结果显示:中华山蝠幼蝠20 d 前体重和前臂长均呈直线增长,日平均生长率分别为0.57 g/d 与1.36 mm/d, 回归方程为:体重=3.05 + 0.57×日龄, 前臂长= 15.49+1.36×日龄。20 d后增长减慢, 大约5 周龄后开始飞行,初飞幼蝠与成体的体重差异显著,前臂长与成蝠差异不显著。中华山蝠幼体生长与Logistic、Von Bertalanffy 及Compertz 3 种生长曲线模型的拟合度均较高, R2 值超过0.93。前臂长的增长用Logistic曲线拟合最合适,体重的增长用Von Bertalanffy 曲线拟合最合适。根据前臂长以及第四掌骨与指骨间软骨的发育模式,得到出生后1 ~ 76 d幼蝠的年龄鉴定方程式。当前臂长≤43.32 mm时,日龄= -10.77 +0.71 × 前臂长;当前臂长> 43.32 mm时, 日龄= 71.10 - 9.89 ×第四掌骨与指骨间软骨长。   相似文献   

5.
This study describes the postnatal development of body mass, forearm length and epiphyseal phalangeal gap in a free ranging population of the Long-fingered Bat, Miniopterus schreibersii pallidus Thomas, 1907, in a maternity roost in the Mahidasht cave in western Iran. The pups at birth had a mean body mass of 3.74?±?0.09 g and forearm length of 24.3?±?0.31mm. The length of forearm and body mass increased linearly during first two weeks, and thereafter maintained an apparent stability. The epiphyseal gap of the fourth metacarpal phalangeal joint increased until the thirteenth day, then decreased linearly until the 70th day and thereafter fused. The rate of body mass gain and forearm growth during the first 13 days was 0.54 g/day and 1.39 mm/day, respectively. Initiation of flight occurred three weeks after birth. A method of estimating age was derived from the values of the forearm length and the total gap of the fourth metacarpal-phalangeal joint during the pre-flight and post-flight periods.  相似文献   

6.
Big brown bats form large maternity colonies of up to 200 mothers and their pups. If pups are separated from their mothers, they can locate each other using vocalizations. The goal of this study was to systematically characterize the development of echolocation and communication calls from birth through adulthood to determine whether they develop from a common precursor at the same or different rates, or whether both types are present initially. Three females and their six pups were isolated from our captive breeding colony. We recorded vocal activity from postnatal day 1 to 35, both when the pups were isolated and when they were reunited with their mothers. At birth, pups exclusively emitted isolation calls, with a fundamental frequency range <20 kHz, and duration >30 ms. By the middle of week 1, different types of vocalizations began to emerge. Starting in week 2, pups in the presence of their mothers emitted sounds that resembled adult communication vocalizations, with a lower frequency range and longer durations than isolation calls or echolocation signals. During weeks 2 and 3, these vocalizations were extremely heterogeneous, suggesting that the pups went through a babbling stage before establishing a repertoire of stereotyped adult vocalizations around week 4. By week 4, vocalizations emitted when pups were alone were identical to adult echolocation signals. Echolocation and communication signals both appear to develop from the isolation call, diverging during week 2 and continuing to develop at different rates for several weeks until the adult vocal repertoire is established.  相似文献   

7.
Four arctic fox Alopex lagopus pups (two males and two females) were caught at dens when about 25–53 days old and kept in outdoor pens at NyÅlesund, Svalbard. Their growth in body size (as measured by the length of a front foot), increase in weight, and food consumption were monitored from July to December, 1987. The pups grew rapidly and reached 97.5 ± 0.1% of their maximum adult size when they were 99–127 days old. Increase in body weight took longer (130 days). Food consumption generally increased until about 90 days old, after which it was highly variable. Pups consumed on average 266 kcal kg–1 day–1 growing 34g/day until 95 days old. Subsequently, until about 200 days old, they consumed 202 kcal kg–1 day–1 and grew 6.8 g/day.  相似文献   

8.
回声定位声波地理差异及其形成原因是蝙蝠生态学研究领域一个基本而关键的问题,对于探索物种生存机制、物种形成及其保护具有重要科学意义。本研究从较大地理尺度上(9个地理种群)研究了菲菊头蝠(Rhinolophus pusillus)回声定位声波结构的地理差异,并进一步探讨了影响回声定位声波地理种群差异的因素。结果表明,菲菊头蝠雌性的体型较雄性略大,其主频较高。不同地理种群之间回声定位声波差异明显,包括脉冲持续时间、脉冲间隔、主频以及带宽在不同的地理种群之间均表现出一定程度的差异。进一步分析发现,不同地理种群之间的雌性菲菊头蝠前臂长和体重均与主频呈较弱的负相关,降雨量与雌性的主频呈较强的正相关;而不同地理种群之间的雄性前臂长、体重和降雨量与回声定位声波参数均无相关性;此外,地理距离、温度、湿度均与雌雄回声定位声波参数无相关性。本研究结果表明,菲菊头蝠不同地理种群间的回声定位声波出现明显差异,其中,体型和降雨量为主要影响因子,说明蝙蝠回声定位叫声的进化主要受到了当地生境的影响,表现出动物对不同生境的适应性进化。  相似文献   

9.
Postnatal changes in flight development, wing shape and wing bone lengths of 56 marked neonate Hipposideros pomona were investigated under natural conditions in southwest China. Flight experiments showed that pups began to flutter with a short horizontal displacement at 10 days and first took flight at 19 days, with most achieving sustained flight at 1 month old. Analysis of covariance on wingspan, wing area, and the other seven wing characteristics between ‘pre-flight’ and ‘post-volancy’ periods supports the hypothesis that growth had one ‘pre-flight’ trajectory and a different ‘post-volancy’ trajectory in bats. Wingspan, handwing length and area, armwing length and area, and total wing area increased linearly until the age of first flight, after which the growth rates decreased (all P < 0.001). Wing loading declined linearly until day 19 before ultimately decreasing to adult levels (P < 0.001). Additionally, the relationship of different pairwise combinations of bony components composing span-wise length and chord-wise length was evaluated to test the hypothesis that compensatory growth of wing bones in H. pomona occurred in both ‘pre-flight’ and ‘post-volancy’ periods. The frequency of short-long and long-short pairs was significantly greater than that of short-short, long-long pairs in most pairs of bone elements in adults. The results indicate that a bone ‘shorter than expected’ would be compensated by a bone or bones ‘longer than expected’, suggesting compensatory growth in H. pomona. The pairwise comparisons conducted in adults were also performed in young bats during ‘pre-flight’ and ‘post-volancy’ periods, demonstrating that compensatory growth occurred throughout postnatal ontogeny.  相似文献   

10.
Ecologists and evolutionary biologists have a long‐standing interest in the patterns and causes of geographical variation in animals’ acoustic signals. Nonetheless, the processes driving acoustic divergence are still poorly understood. Here, we studied the geographical variation in echolocation vocalizations (commonly referred to as echolocation ‘pulses’ given their short duration and relatively stereotypic nature, and to contrast them from the communicative vocalizations or ‘calls’) of a widespread bat species Hipposideros armiger in south China, and assessed whether the acoustic divergence was driven by either ecological selection, or cultural or genetic drift. Our results revealed that the peak frequency of echolocation pulses varied significantly across populations sampled, with the maximum variation of about 6 kHz. The peak frequency clustered into three groups: eastern and western China, Hainan and southern Yunnan. The population differences in echolocation pulses were not significantly related to the variation in climatic (mean annual temperature, mean annual relative humidity, and mean annual precipitable water) or genetic (genetic distance) factors, but significantly related to morphological (forearm length) variation which was correlated with mean annual temperature. Moreover, the acoustic differences were significantly correlated with geographical and latitudinal distance after controlling for ‘morphological distance’. Thus, neither direct ecological selection nor genetic drift contributed to the acoustic divergence observed in H. armiger. Instead, we propose that the action of both indirect ecological selection (i.e. selection on body size) as well as cultural drift promote, in part, divergence in echolocation vocalizations of individuals within geographically distributed populations.  相似文献   

11.
Morphological development, including the body proportions, fins, pigmentation and labyrinth organ, in laboratory-hatched larval and juvenile three-spot gourami Trichogaster trichopterus was described. In addition, some wild larval and juvenile specimens were observed for comparison. Body lengths of larvae and juveniles were 2.5 ± 0.1 mm just after hatching (day 0) and 9.2 ± 1.4 mm on day 22, reaching 20.4 ± 5.0 mm on day 40. Aggregate fin ray numbers attained their full complements in juveniles >11.9 mm BL. Preflexion larvae started feeding on day 3 following upper and lower jaw formation, the yolk being completely absorbed by day 11. Subsequently, oblong conical teeth appeared in postflexion larvae >6.4 mm BL (day 13). Melanophores on the body increased with growth, and a large spot started forming at the caudal margin of the body in flexion postlarvae >6.7 mm BL, followed by a second large spot positioned posteriorly on the midline in postflexion larvae >8.6 mm BL. The labyrinth organ differentiated in postflexion larvae >7.9 mm BL (day 19). For eye diameter and the first soft fin ray of pelvic fin length, the proportions in laboratory-reared specimens were smaller than those in wild specimens in 18.5–24.5 mm BL. The pigmentation pattern of laboratory-reared fish did not distinctively differ from that in the wild ones. Comparisons with larval and juvenile morphology of a congener T. pectoralis revealed several distinct differences, particularly in the numbers of myomeres, pigmentations and the proportional length of the first soft fin ray of the pelvic fin.  相似文献   

12.
在广西桂林研究了同域分布的大蹄蝠(Hipposideros armiger)和中蹄蝠(H.larvatus)在不同开阔度环境中回声定位声波信号的变化。用超声波仪录制自由悬挂和分别释放于人工"大棚"和"小棚"内飞行的蝙蝠的回声定位声波,使用超声分析软件分析声脉冲时程、主频率及声脉冲间隔,通过重复测量方差分析比较不同状态下的声波参数。结果表明:中蹄蝠声波的主频在悬挂状态下最高,小棚内飞行时次之,大棚内飞行最低;两种蹄蝠声波的脉冲时程和脉冲间隔在悬挂状态下最长,大棚内飞行次之,小棚内飞行最低。总之,这两种蹄蝠的回声定位声波能够随所处状态的变化而变化,可根据生境的复杂度调节声讯号,具有明显的声波可塑性。  相似文献   

13.
The greater sac-winged bat, Saccopteryx bilineata (Emballonuridae), uses two distinct echolocation call sequences: a ‘monotonous’ sequence, where bats emit ~48 kHz calls at a relatively stable rate, and a frequency-alternating sequence, where bats emit calls at ~45 kHz (low-note call) and ~48 kHz (high-note call). The frequencies of these low–high-note pairs remain stable within sequences. In Panama, we recorded echolocation calls from S. bilineata with a multi-microphone array at two sites: one a known roosting site, the other a known foraging site. Our results indicate that this species (1) only produces monotonous sequences in non-foraging contexts and, at times, directly after emitting a feeding buzz and (2) produces frequency-alternating sequences when actively foraging. These latter sequences are also characterized by an unusual, offbeat emission rhythm. We found significant positive relationships between (1) call intensity and call duration and (2) call intensity and distance from clutter. However, these relationships were weaker than those reported for bats from other families. We speculate on how call frequency alternation and an offbeat emission rhythm might reflect a novel strategy for prey detection at the edge of complex habitat in this ancient family of bats.  相似文献   

14.
Otolith development was observed and the formation of daily growth increments in otoliths of Chinese sucker, Myxocyprinus asiaticus, was validated by monitoring known-age larvae and juveniles in the laboratory from 2003 to 2005. Otolith shape changed with larval and juvenile development, and there was an exponential relationship until a body length of 16 mm or so, and a linear relationship after a body length of 16 mm between otolith size and fish size. The first increment was identified in larvae 1 day after hatching. The regressed equations between daily age (D) and increment number in otoliths (N) were N = −0.64 + 0.96D in lapillus, and N = −0.31 + 0.98D in sagitta. The slopes were not significantly different than 1.0. This demonstrated that otolith increments in this species were formed daily and can be used for daily age determination.  相似文献   

15.
1.  Most studies examining interactions between insectivorous bats and tympanate prey use the echolocation calls of aerially-feeding bats in their analyses. We examined the auditory responses of noctuid (Eurois astricta) and notodontid (Pheosia rimosa) moth to the echolocation call characteristics of a gleaning insectivorous bat, Myotis evotis.
2.  While gleaning, M. Evotis used short duration (mean ± SD = 0.66 ± 0.28 ms, Table 2), high frequency, FM calls (FM sweep = 80 – 37 kHz) of relatively low intensity (77.3 + 2.9, –4.2 dB SPL). Call peak frequency was 52.2 kHz with most of the energy above 50 kHz (Fig. 1).
3.  Echolocation was not required for prey detection or capture as calls were emitted during only 50% of hovers and 59% of attacks. When echolocation was used, bats ceased calling 324.7 (±200.4) ms before attacking (Fig. 2), probably using prey-generated sounds to locate fluttering moths. Mean call repetition rate during gleaning attacks was 21.7 (±15.5) calls/s and feeding buzzes were never recorded.
4.  Eurois astricta and P. rimosa are typical of most tympanate moths having ears with BFs between 20 and 40 kHz (Fig. 3); apparently tuned to the echolocation calls of aerially-feeding bats. The ears of both species respond poorly to the high frequency, short duration, faint stimuli representing the echolocation calls of gleaning M. evotis (Figs. 4–6).
5.  Our results demonstrate that tympanate moths, and potentially other nocturnal insects, are unable to detect the echolocation calls typical of gleaning bats and thus are particularly susceptible to predation.
  相似文献   

16.
Ecological aspects of recruitment in the amphidromous goby, Sicyopterus japonicus, were studied from larval collections made with a set net in the estuary of the Ota River, Wakayama, Japan. The abundance patterns of the 12,766 larvae collected from 18 April to 26 August 2006 showed several peaks during the recruitment season. Their body sizes at recruitment ranged from 23.5 to 30.0 mm standard length (mean ± SD, 26.3 ± 1.1 mm), 0.11 to 0.49 g body weight (0.22 ± 0.05 g), and 8 to 20 condition factor (11 ± 2). The standard length of the goby larvae tended to decrease with the season, while their body weight slightly increased and resulted in an increase in condition factor. The recruitment of larvae occurred mainly during the daytime. Otolith growth increment analysis of 30 larvae collected by a square lift net on 30 April 2005 revealed that the oceanic larval duration after downstream migration ranged from 173 to 253 days (208 ± 22) after hatching. A limited time of recruitment in early summer and a considerably long duration of oceanic life (about a half year) appeared to be unique characteristics of this Sicyopterus species that lives in a temperate region in comparison to other tropical species of the genus Sicyopterus that all have year-round recruitment.  相似文献   

17.
Temporal cues are important for some forms of auditory processing, such as echolocation. Among odontocetes (toothed whales, dolphins, and porpoises), it has been suggested that porpoises may have temporal processing abilities which differ from other odontocetes because of their relatively narrow auditory filters and longer duration echolocation signals. This study examined auditory temporal resolution in two Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) using auditory evoked potentials (AEPs) to measure: (a) rate following responses and modulation rate transfer function for 100 kHz centered pulse sounds and (b) hearing thresholds and response amplitudes generated by individual pulses of different durations. The animals followed pulses well at modulation rates up to 1,250 Hz, after which response amplitudes declined until extinguished beyond 2,500 Hz. The subjects had significantly better hearing thresholds for longer, narrower-band pulses similar to porpoise echolocation signals compared to brief, broadband sounds resembling dolphin clicks. Results indicate that the Yangtze finless porpoise follows individual acoustic signals at rates similar to other odontocetes tested. Relatively good sensitivity for longer duration, narrow-band signals suggests that finless porpoise hearing is well suited to detect their unique echolocation signals.  相似文献   

18.
An ontogenetic series of in-captivity bred Corydoras aeneus was used, in order to study the developmental changes in the external morphology. Allometric growth of several body parts was studied, attempting to reveal important steps in the species’ early life history. Based on the external morphology, the different stages during early development of C. aeneus were identified, according to Balon (Journal of the Fisheries Research Board of Canada 32:1663–1670, 1975). After hatching, at a SL of 3.5 mm, the developmental state corresponded to an eleutherembryonic phase, followed by the protopterygiolarval phase (4.4–5.7 mm SL), the pterygiolarval phase (5.7–14.0 mm SL) and the juvenile period. In addition, an overall growth curve and inflexion points were determined. As such, ontogenetic changes in growth coefficients k (in SL = b age k ) were determined. Log transformed data were used for a piecewise linear regression method, as per regression spline smoothing procedures. This way, the growth curve could be divided into six different intervals of growth rate. Initially, the slope was 0.05 until 0.7 dph, then increasing to 0.18 until 4 dph, and 0.36 until 10 dph. After this, growth rate reached a maximum of 0.76 until 24 dph, slowed down to 0.47 until 37 dph and then finally again slowed down to 0.36. A similar growth analysis was also done on the different body parts and these results were compared to both morphological and data from literature. This led to the conclusion that the inflexion points found during the early development of C. aeneus matched the different key-events known in teleost early life history and development. The transition from endo- to exogenous feeding, at the moment a functional branchial respiratory system becomes increasingly important, was the first point at which allometries changed together with functional demands. A second, similar congruence occurred at the transition to the pterygiolarval phase, when priorities shift towards locomotory needs. Finally, our results also indicated a transition to a carangiform swimming mode at approximately 8 mm SL. Handling editor: K. Martens  相似文献   

19.
2009年9月在广东省南岭采集到5只森林型蝙蝠,其鼻孔突出成短管状,背部毛棕褐色,前臂长34.3~36.8mm;核型为2n=44,FN=50.经鉴定为蝙蝠科管鼻蝠亚科的中管鼻蝠(Murina huttonii),为广东省翼手类分布新纪录.用蝙蝠超声波接收器(Anabat Ⅱ)录制并分析其回声定位声波,为FM型.中管鼻蝠...  相似文献   

20.
Allometric growth is a common feature during fish larval development. It has been proposed as a growth strategy to prioritize the development of body segments related to primordial functions like feeding and swimming to increase the probability of survival during this critical period. In the present study we evaluated the allometric growth patterns of body segments associated to swimming and feeding during the larval stages of Pacific red snapper Lutjanus peru. The larvae were kept under intensive culture conditions and sampled every day from hatching until day 33 after hatching. Each larva was classified according to its developmental stage into yolk-sac larva, preflexion larva, flexion larva or postflexion larva, measured and the allometric growth coefficient of different body segments was evaluated using the potential model. Based on the results we can infer the presence of different ontogenetic priorities during the first developmental stages associated with vital functions like swimming during the yolk-sac stage [total length (TL) interval = 2.27–3.005 mm] and feeding during the preflexion stage (TL interval = 3.007–5.60 mm) by promoting the accelerated growth of tail (post anal) and head, respectively. In the flexion stage (TL interval = 5.61–7.62 mm) a change in growth coefficients of most body segments compared to the previous stage was detected, suggesting a shift in growth priorities. Finally, in the postflexion stage (TL interval = 7.60–15.48 mm) a clear tendency to isometry in most body segments was observed, suggesting that growth priorities have been fulfilled and the larvae will initiate with the transformation into a juvenile. These results provide a framework of the larval growth of L. peru in culture conditions which can be useful for comparative studies with other species or in aquaculture to evaluate the changes in larval growth due to new conditions or feeding protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号