首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional interactions between mitochondrial DNA polymerase (pol gamma) and mitochondrial single-stranded DNA-binding protein (mtSSB) from Drosophila embryos have been evaluated with regard to the overall activity of pol gamma and in partial reactions involving template-primer binding and initiation and idling in DNA strand synthesis. Both the 5' --> 3' DNA polymerase and 3' --> 5' exonuclease in pol gamma are stimulated 15-20-fold on oligonucleotide-primed single-stranded DNA by native and recombinant forms of mtSSB. That the extent of stimulation is similar for both enzyme activities over a broad range of KCl concentrations suggests their functional coordination and a similar mechanism of stimulation by mtSSB. At the same time, the high mispair specificity of pol gamma in exonucleolytic hydrolysis is maintained, indicating that enhancement of pol gamma catalytic efficiency is likely not accompanied by increased nucleotide turnover. DNase I footprinting of pol gamma.DNA complexes and initial rate measurements show that mtSSB enhances primer recognition and binding and stimulates 30-fold the rate of initiation of DNA strands. Dissociation studies show that productive complexes of the native pol gamma heterodimer with template-primer DNA are formed and remain stable in the absence of replication accessory proteins.  相似文献   

2.
The catalytic subunit (alpha) of mitochondrial DNA polymerase (pol gamma) shares conserved DNA polymerase and 3'-5' exonuclease active site motifs with Escherichia coli DNA polymerase I and bacteriophage T7 DNA polymerase. A major difference between the prokaryotic and mitochondrial proteins is the size and sequence of the region between the exonuclease and DNA polymerase domains, referred to as the spacer in pol gamma-alpha. Four gamma-specific conserved sequence elements are located within the spacer region of the catalytic subunit in eukaryotic species from yeast to humans. To elucidate the functional roles of the spacer region, we pursued deletion and site-directed mutagenesis of Drosophila pol gamma. Mutant proteins were expressed from baculovirus constructs in insect cells, purified to near homogeneity, and analyzed biochemically. We find that mutations in three of the four conserved sequence elements within the spacer alter enzyme activity, processivity, and/or DNA binding affinity. In addition, several mutations affect differentially DNA polymerase and exonuclease activity and/or functional interactions with mitochondrial single-stranded DNA-binding protein. Based on these results and crystallographic evidence showing that the template-primer binds in a cleft between the exonuclease and DNA polymerase domains in family A DNA polymerases, we propose that conserved sequences within the spacer of pol gamma may position the substrate with respect to the enzyme catalytic domains.  相似文献   

3.
Drosophila mitochondrial DNA polymerase has been reconstituted and purified from baculovirus-infected insect cells. Baculoviruses encoding full-length and mature forms of the catalytic and accessory subunits were generated and used in single and co-infection studies. Recombinant heterodimeric holoenzyme was reconstituted in both the mitochondria and cytoplasm of Sf9 cells and required the mitochondrial presequences in both subunits. The recombinant holoenzyme contains DNA polymerase and 3'-5' exonuclease that are stimulated substantially by both salt and mitochondrial single-stranded DNA-binding protein. Thus, the recombinant enzyme exhibits biochemical properties indistinguishable from those of the native enzyme from Drosophila embryos. Production of the catalytic subunit alone yielded soluble protein with the chromatographic properties of the heterodimeric holoenzyme. However, the purified catalytic core has a 50-fold lower specific activity. This provides evidence of a critical role for the accessory subunit in the catalytic efficiency of Drosophila mitochondrial DNA polymerase.  相似文献   

4.
The mitochondrial DNA polymerase has been purified to near-homogeneity from early embryos of Drosophila melanogaster. Sodium dodecyl sulfate gel electrophoresis of the highly purified enzyme reveals two polypeptides with molecular masses of 125,000 and 35,000 daltons, in a ratio of 1:1. The enzyme has a sedimentation coefficient of 7.6 S and a Stokes radius of 51 A. Taken together, the data suggest that the D. melanogaster DNA polymerase gamma is a heterodimer. DNA polymerase activity gel analysis has allowed the assignment of the DNA polymerization function to the large subunit. The DNA polymerase exhibits a remarkable ability to utilize efficiently a variety of template-primers including gapped DNA, poly(rA).oligo(dT) and singly primed phi X174 DNA. Both the crude and the highly purified enzymes are stimulated by KCl, and inhibited by dideoxythymidine triphosphate and by N-ethylmaleimide. Thus, the catalytic properties of the near-homogeneous Drosophila enzyme are consistent with those of DNA polymerase gamma as partially purified from several vertebrates.  相似文献   

5.
Functional interactions between mitochondrial DNA polymerase (pol gamma) and mitochondrial single-stranded DNA-binding protein (mtSSB) from Drosophila embryos greatly enhance the overall activity of pol gamma by increasing primer recognition and binding and stimulating the rate of initiation of DNA strands (Farr, C. L., Wang, Y., and Kaguni, L. S. (1999) J. Biol. Chem. 274, 14779-14785). We show here that DNA-binding mutants of mtSSB are defective in stimulation of DNA synthesis by pol gamma. RNAi knock-down of mtSSB reduces expression to <5% of its normal level in Schneider cells, resulting in growth defects and in the depletion of mitochondrial DNA (mtDNA). Overexpression of mtSSB restores cell growth rate and the copy number of mtDNA, whereas overexpression of a DNA-binding and functionally impaired form of mtSSB neither rescues the cell growth defect nor the mtDNA depletion phenotype. Further development of Drosophila animal models, in which induced mtDNA depletion is manipulated by controlling exogenous expression of wild-type or mutant forms, will offer new insight into the mechanism and progression of human mtDNA depletion syndromes and possible intervention schemes.  相似文献   

6.
DNA polymerase III of Escherichia coli requires multiple auxiliary factors to enable it to serve as a replicative complex. We demonstrate that auxiliary components of the DNA polymerase III holoenzyme, the gamma delta complex and beta subunit, markedly stimulate DNA polymerase II on long single-stranded templates. DNA polymerase II activity is enhanced by single-stranded DNA binding protein, but the stimulation by gamma delta and beta can be observed either in the absence or presence of single-stranded DNA binding protein. In contrast with DNA polymerase III, the requirement of DNA polymerase II for gamma delta cannot be bypassed by large excesses of the beta subunit at low ionic strength in the absence of the single-stranded DNA binding protein. The product of the DNA polymerase II-gamma delta-beta reaction on a uniquely primed single-stranded circle is of full template length; the reconstituted enzyme apparently is incapable of strand displacement synthesis. The possible biological implications of these observations are discussed.  相似文献   

7.
A mispair-specific 3'-->5' exonuclease copurifies quantitatively with the near-homogeneous Drosophila gamma polymerase (Kaguni, L.S., and Olson, M.W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6469-6473). The exonuclease and polymerase exhibit similar reaction requirements and optima, suggesting functional coordination of their activities. Under nonpolymerization conditions, the 3'-->5' exonuclease hydrolyzes 3'-terminal mispairs approximately 15-fold more efficiently than 3'-terminal base pairs on primed single-stranded DNA substrates, whereas it does not discriminate between any of three specific mispairs (dAMP:dAMP;dGMP:dGMP; dGMP:dAMP). Under polymerization conditions, gamma polymerase does not extend a 3'-terminal mispair from the "stationary" state, even in the presence of a large excess of the next correct nucleotide. Instead, 3'-terminal mispairs are hydrolyzed quantitatively by the 3'-->5' exonuclease over the reaction time course. During DNA synthesis by gamma polymerase in the "polymerization" mode, limited misincorporation and subsequent mispair extension do occur. Here, it appears that misincorporation and not mispair extension is rate-limiting. Template-primer challenge experiments suggest that the mechanism of template-primer transfer from the 3'-->5' exonuclease active site to the DNA polymerase active site is intermolecular; transfer from the exonuclease to polymerase mode appears to require dissociation and reassociation of mitochondrial DNA polymerase.  相似文献   

8.
The DNA polymerase-primase from Drosophila melanogaster contains a cryptic 3'----5' exonuclease that can be detected after separation of the 182-kDa polymerase subunit from the four-subunit enzyme. To determine the specificity of excision of mispaired nucleotides by the exonuclease, we have utilized primed phi X174am3 single-stranded DNA containing a noncomplementary nucleotide at the 3'-primer terminus, opposite deoxyadenosine at position 587 in the amber3 codon of the template strand. In the absence of polymerization, the preference for excision of the mispaired nucleotide from the primer is C greater than A much greater than G. Excision under these conditions is inhibited by the addition of deoxyguanosine monophosphate. Under conditions of concomitant DNA synthesis, the preference for excision at this site becomes A = G much greater than C, and excision is insensitive to deoxyguanosine monophosphate. The high fidelity of DNA synthesis exhibited by the isolated 182-kDa polymerase subunit is not reduced by concentrations of deoxyguanosine monophosphate or adenosine monophosphate that inhibit proofreading by prokaryotic DNA polymerases. Thus, the 3'----5' exonuclease of the Drosophila DNA polymerase-primase participates in exonucleolytic proofreading by excising noncomplementary nucleotides prior to extension of the primer by polymerase action. The deoxynucleoside triphosphate analogs N2-(p-butylphenyl)deoxyguanosine triphosphate and N2-(p-butylphenyl)deoxyadenosine triphosphate are potent inhibitors of DNA polymerase alpha. Like calf thymus DNA polymerase delta, recently determined to have proofreading capability, DNA synthesis by the isolated Drosophila 182-kDa polymerase subunit was not inhibited by the two analogs. In contrast, DNA synthesis by the intact Drosophila polymerase-primase complex was inhibited greater than 95% by these analogs.  相似文献   

9.
Peptide sequences obtained from the accessory subunit of Xenopus laevis mitochondrial DNA (mtDNA) polymerase gamma (pol gamma) were used to clone the cDNA encoding this protein. Amino-terminal sequencing of the mitochondrial protein indicated the presence of a 44-amino-acid mitochondrial targeting sequence, leaving a predicted mature protein with 419 amino acids and a molecular mass of 47.3 kDa. This protein is associated with the larger, catalytic subunit in preparations of active mtDNA polymerase. The small subunit exhibits homology to its human, mouse, and Drosophila counterparts. Interestingly, significant homology to glycyl-tRNA synthetases from prokaryotic organisms reveals a likely evolutionary relationship. Since attempts to produce an enzymatically active recombinant catalytic subunit of Xenopus DNA pol gamma have not been successful, we tested the effects of adding the small subunit of the Xenopus enzyme to the catalytic subunit of human DNA pol gamma purified from baculovirus-infected insect cells. These experiments provide the first functional evidence that the small subunit of DNA pol gamma stimulates processive DNA synthesis by the human catalytic subunit under physiological salt conditions.  相似文献   

10.
DNA replication of double-stranded simian virus 40 (SV40) origin-containing plasmids, which has been previously thought to be a species-specific process that occurs only with factors derived from primate cells, is catalyzed with an extract derived from embryos of the fruit fly Drosophila melanogaster. This reaction is dependent upon both large T antigen, the SV40-encoded replication initiator protein and DNA helicase, and a functional T-antigen binding site at the origin of DNA replication. The efficiency of replication with extracts derived from Drosophila embryos is approximately 10% of that observed with extracts prepared from human 293 cells. This activity is not a unique property of embryonic extracts, as cytoplasmic extracts from Drosophila tissue culture cells also support T-antigen-mediated replication of SV40 DNA. By using highly purified proteins, DNA synthesis is initiated by Drosophila polymerase alpha-primase in a T-antigen-dependent manner in the presence of Drosophila replication protein A (RP-A; also known as single-stranded DNA-binding protein), but neither human RP-A nor Escherichia coli single-stranded DNA-binding protein could substitute for Drosophila RP-A. In reciprocal experiments, however, Drosophila RP-A was able to substitute for human RP-A in reactions carried out with human polymerase alpha-primase. These results collectively indicate that many of the specific functional interactions among T antigen, polymerase alpha-primase, and RP-A are conserved from primates to Drosophila species. Moreover, the observation that SV40 DNA replication can be performed with Drosophila factors provides a useful assay for the study of bidirectional DNA replication in Drosophila species in the context of a complete replication reaction.  相似文献   

11.
Progressive external ophthalmoplegia (PEO) is a heritable mitochondrial disorder characterized by the accumulation of multiple point mutations and large deletions in mtDNA. Autosomal dominant PEO was recently shown to co-segregate with a heterozygous Y955C mutation in the human gene encoding the sole mitochondrial DNA polymerase, DNA polymerase gamma (pol gamma). Since Tyr-955 is a highly conserved residue critical for nucleotide recognition among family A DNA polymerases, we analyzed the effects of the Y955C mutation on the kinetics and fidelity of DNA synthesis by the purified human mutant polymerase in complex with its accessory subunit. The Y955C enzyme retains a wild-type catalytic rate (k(cat)) but suffers a 45-fold decrease in apparent binding affinity for the incoming nucleoside triphosphate (K(m)). The Y955C derivative is 2-fold less accurate for base pair substitutions than wild-type pol gamma despite the action of intrinsic exonucleolytic proofreading. The full mutator effect of the Y955C substitution was revealed by genetic inactivation of the exonuclease, and error rates for certain mismatches were elevated by 10-100-fold. The error-prone DNA synthesis observed for the Y955C pol gamma is consistent with the accumulation of mtDNA mutations in patients with PEO.  相似文献   

12.
1. Subcellular localization and changes in the activity of DNA polymerase gamma were examined in sea urchin eggs and embryos. 2. The enzyme was shown to be localized predominantly in mitochondria by differential and isopycnic centrifugation. 3. During embryogenesis, the enzyme activity per embryo remained constant until blastula stage, and thereafter increased. 4. Similarly mitochondrial DNA per embryo increased, indicating that mitochondrial DNA replication starts during embryogenesis. 5. The gamma-activity per mitochondrial DNA remained constant during embryogenesis. 6. These results suggest that mitochondria contain a constant amount of replicative enzyme (DNA polymerase gamma) regardless of mitochondrial DNA replication, which differs from the case of nuclear DNA replication.  相似文献   

13.
The ATP-dependent Lon protease belongs to a unique group of proteases that bind DNA. Eukaryotic Lon is a homo-oligomeric ring-shaped complex localized to the mitochondrial matrix. In vitro, human Lon binds specifically to a single-stranded GT-rich DNA sequence overlapping the light strand promoter of human mitochondrial DNA (mtDNA). We demonstrate that Lon binds GT-rich DNA sequences found throughout the heavy strand of mtDNA and that it also interacts specifically with GU-rich RNA. ATP inhibits the binding of Lon to DNA or RNA, whereas the presence of protein substrate increases the DNA binding affinity of Lon 3.5-fold. We show that nucleotide inhibition and protein substrate stimulation coordinately regulate DNA binding. In contrast to the wild type enzyme, a Lon mutant lacking both ATPase and protease activity binds nucleic acid; however, protein substrate fails to stimulate binding. These results suggest that conformational changes in the Lon holoenzyme induced by nucleotide and protein substrate modulate the binding affinity for single-stranded mtDNA and RNA in vivo. Co-immunoprecipitation experiments show that Lon interacts with mtDNA polymerase gamma and the Twinkle helicase, which are components of mitochondrial nucleoids. Taken together, these results suggest that Lon participates directly in the metabolism of mtDNA.  相似文献   

14.
DNA polymerase gamma and mitochondrial DNA polymerase were isolated from brain nuclei and synaptosomes respectively. The presence of a single DNA polymerase in synaptosomal mitochondria was established by chromatography on DEAE-cellulose, phosphocellulose and DNA-cellulose, as well as by sedimentation analysis and isoelectric focusing. A great similarity between the purified nuclear DNA polymerase gamma and the mitochondrial enzyme was found by the following criteria: chromatographic behaviour in three column systems; essentially complete inhibition by N-ethyl-maleimide (2 mM); optimal requirements of Mn2+ (0.1 mM), Mg2+ (5 mM) and pH (8.0); template preferences, poly(A) - (dT)20-25 larger than activated DNA larger than poly(dA) - (dT)12-18; lack of activity on single-stranded polynucleotides and (dT)12-primed mRNA; molecular weight (180000), sedimentation (9.2 S) and isoelectric point (pI 5.4). We therefore conclude that brain nuclear DNA polymerase gamma and synaptosomal mitochondrial DNA polymerase are closely related and may even be identical.  相似文献   

15.
16.
Harris et al. [P.V. Harris, O.M. Mazina, E.A. Leonhardt, R.B. Case, J.B. Boyd, K.C. Burtis, Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes, Mol. Cell. Biol., 16 (1996) 5764-5771.] reported the molecular cloning of Drosophila mus308 gene, and its nucleotide and protein sequences similar to DNA polymerase I. In the present study, we attempted to find and isolate the gene product by purifying a DNA polymerase fraction not present in mus308 flies. A new DNA polymerase with properties different from those of any known polymerase species was identified and partially purified from the wild-type fly embryos through ten column chromatographies. The enzyme was resistant to aphidicolin, but sensitive to ddTTP and NEM. Human proliferating cell nuclear antigen (PCNA) and Drosophila replication protein A (RP-A) did not affect the polymerase activity. It preferred poly(dA)/oligo(dT) as a template-primer. The molecular mass was about 230 kDa with a broad peak region of 200 to 300 kDa in HiPrep16/30 Sephacryl S-300 gel filtration. These properties a different from those of all reported Drosophila polymerase classes such as alpha, beta, gamma, delta, epsilon and zeta and closely resemble those of the gene product expected from the nucleotide sequence. The new polymerase species appears to have ATPase and 3'-5' exonuclease activities as shown by the chromatographies.  相似文献   

17.
Isolation and characterization of a DNA primase from human mitochondria   总被引:4,自引:0,他引:4  
A family of enzymatic activities isolated from human mitochondria is capable of initiating DNA replication on single-stranded templates. The principal enzymes include at least a primase and DNA polymerase gamma and require that rNTPs as well as dNTPs be present in the reaction mixture. Poly(dC) and poly(dT), as well as M13 phage DNA, are excellent templates for the primase activity. A single-stranded DNA containing the cloned origin of mitochondrial light-strand synthesis can be a more efficient template than M13 phage DNA alone. Primase and DNA polymerase activities were separated from each other by sedimentation in a glycerol density gradient. Using M13 phage DNA as template, these mitochondrial enzymes synthesize RNA primers that are 9 to 12 nucleotides in size and are covalently linked to nascent DNA. The formation of primers appears to be the rate-limiting step in the replication process. Replication of M13 DNA is sensitive to N-ethylmaleimide and dideoxynucleoside triphosphates, but insensitive to rifampicin, alpha-amanitin, and aphidicolin.  相似文献   

18.
A simple and rapid method for determining nucleotide sequences in single-stranded DNA by primed synthesis with DNA polymerase is described. It depends on the use of Escherichia coli DNA polymerase I and DNA polymerase from bacteriophage T4 under conditions of different limiting nucleoside triphosphates and concurrent fractionation of the products according to size by ionophoresis on acrylamide gels. The method was used to determine two sequences in bacteriophage φX174 DNA using the synthetic decanucleotide A-G-A-A-A-T-A-A-A-A and a restriction enzyme digestion product as primers.  相似文献   

19.
The DNA polymerase encoded by herpes simplex virus 1 consists of a single polypeptide of Mr 136,000 that has both DNA polymerase and 3'----5' exonuclease activities; it lacks a 5'----3' exonuclease. The herpes polymerase is exceptionally slow in extending a synthetic DNA primer annealed to circular single-stranded DNA (turnover number approximately 0.25 nucleotide). Nevertheless, it is highly processive because of its extremely tight binding to a primer terminus (Kd less than 1 nM). The single-stranded DNA-binding protein from Escherichia coli greatly stimulates the rate (turnover number approximately 4.5 nucleotides) by facilitating the efficient binding to and extension of the DNA primers. Synchronous replication by the polymerase of primed single-stranded DNA circles coated with the single-stranded DNA-binding protein proceeds to the last nucleotide of available 5.4-kilobase template without dissociation, despite the 20-30 min required to replicate the circle. Upon completion of synthesis, the polymerase is slow in cycling to other primed single-stranded DNA circles. ATP (or dATP) is not required to initiate or sustain highly processive synthesis. The 3'----5' exonuclease associated with the herpes DNA polymerase binds a 3' terminus tightly (Km less than 50 nM) and is as sensitive as the polymerase activity to inhibition by phosphonoacetic acid (Ki approximately 4 microM), suggesting close communication between the polymerase and exonuclease sites.  相似文献   

20.
The mechanisms involved in the regulation of mitochondrial DNA (mtDNA) replication, a process that is crucial for mitochondrial biogenesis, are not well understood. In this study, we evaluate the role of DNA polymerase gamma (pol gamma), the key enzyme in mtDNA replication, in both Drosophila cell culture and in developing flies. We report that overexpression of the pol gamma catalytic subunit (pol gamma-alpha) in cultured Schneider cells does not alter either the amount of mtDNA or the growth rate of the culture. The polypeptide is properly targeted to mitochondria, yet the large excess of pol gamma-alpha does not interfere with mtDNA replication under these conditions where the endogenous polypeptide is apparently present in amounts that exceed of the demand for its function in the cell. In striking contrast, overexpression of pol gamma-alpha at the same level in transgenic flies interferes with the mtDNA replication process, presumably by altering the mechanism of DNA synthesis, suggesting differential requirements for, and/or regulation of, mtDNA replication in Drosophila cell culture versus the developing organism. Overexpression of pol gamma-alpha in transgenic flies produces a significant depletion of mtDNA that causes a broad variety of phenotypic effects. These alterations range from pupal lethality to moderate morphological abnormalities in adults. depending on the level and temporal pattern of overexpression. Our results demonstrate that although cells may tolerate a variable amount of the pol gamma catalytic subunit under some conditions, its level may be critical in the context of the whole organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号