首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolonged infusions of lipid and heparin that achieve high physiological free fatty acid (FFA) concentrations inhibit hepatic (and peripheral) insulin sensitivity in humans. These infusions are composed largely of polyunsaturated fatty acids (PUFA; linoleic and linolenic). It is not known whether fatty acid composition per se affects hepatic glucose metabolism in humans. To address this issue, we examined the impact of enteral infusions of either palm oil (48% palmitic, 35% oleic, and 8% linoleic acids) or safflower oil (6% palmitic, 12% oleic, 74% linoleic acids) in 14 obese nondiabetic subjects. (2)H(2)O was administered to determine the contribution of gluconeogenesis to endogenous glucose production (EGP), and a primed continuous infusion of [6,6-(2)H]glucose was administered to assess glucose appearance. As a result of the lipid infusions, plasma FFA concentrations increased significantly in both the palm oil (507.5 +/- 47.4 to 939.3 +/- 61.3 micromol/l, P < 0.01) and safflower oil (588.2.0 +/- 43.0 to 857.8 +/- 68.7 micromol/l, P < 0.01) groups after 4 h. EGP was similar at baseline (12.4 +/- 1.8 vs. 11.2 +/- 1.0 micromol x kg FFM(-1) x min(-1)). During a somatostatin-insulin clamp, the glucose infusion rate was significantly lower (AUC glucose infusion rate 195.8 +/- 50.7 vs. 377.8 +/- 38.0 micromol/kg FFM, P < 0.01), and rates of EGP were significantly higher (10.7 +/- 1.4 vs. 6.5 +/- 1.5 micromol x kg FFM(-1) x min(-1), P < 0.01) after palm oil compared with safflower oil, respectively. Baseline rates of gluconeogenesis and glycogenolysis were also similar. However, after lipid infusion, rates of glycogenolysis were suppressed by safflower oil but not by palm oil. Thus these studies demonstrate, for the first time in humans, a differential effect of saturated fatty acids and PUFA on hepatic glucose metabolism.  相似文献   

2.
Work by other investigators has shown that an increase in dietary content of monounsaturated fatty acids can result in a decreased plasma low density lipoprotein (LDL) cholesterol concentration. This observation, combined with the epidemiologic evidence that monounsaturated fat-rich diets are associated with decreased rates of death from coronary heart disease, suggests that inclusion of increased amounts of mono-unsaturated fat in the diet may be beneficial. The present study was carried out in a primate model, the African green monkey, to evaluate the effects of dietary monounsaturated fat on plasma lipoprotein cholesterol endpoints. Two study periods were carried out in which the fatty acid compositions of the experimental diets were varied. All diets contained 35% of calories as fat. In the first experimental period, a mixture of fats was used to set the dietary fatty acid composition to be approximately 50-60% of the desired fatty acid, either saturated, monounsaturated, or polyunsaturated (n-6). In the second experimental period, pure fats were used (palm oil, oleic acid-rich safflower oil, and linoleic acid-rich safflower oil) to maximize the difference in fatty acid composition. The effects of the more exaggerated dietary fatty acid differences of period 2 were similar to those that have been reported in humans. For the group fed the diet enriched in monounsaturated fat compared to saturated fat, whole plasma and LDL cholesterol concentrations were significantly lower while high density lipoprotein (HDL) cholesterol concentrations were not affected. For the group fed the diet enriched in polyunsaturated fat compared to saturated fat, both LDL and HDL cholesterol concentrations were significantly lower than in the group fed saturated fat. LDL cholesterol concentrations were comparable in the monounsaturated and polyunsaturated fat groups and the percentage of cholesterol in LDL was lowest in the monounsaturated fat fed group. Trends were similar for the mixed fat diets, although no statistically significant differences in plasma lipoprotein endpoints could be attributed to monounsaturated fatty acids in this dietary comparison. Since effects on plasma lipoproteins similar to those seen in humans were identified in this primate model, relevant mechanisms for the effects of dietary fatty acids on lipoprotein endpoints related to coronary artery atherosclerosis, per se, can subsequently be examined.  相似文献   

3.
Diets with a higher proportion of polyunsaturated fatty acids (i.e., linoleic acid) have decreased iron absorption and utilization compared with diets containing a higher proportion of the saturated fatty acid stearic acid (e.g., beef tallow). However, less is known regarding the influence of other polyunsaturated or monounsaturated fatty acids, along with higher dietary iron, on iron absorption and utilization. The present study was conducted to compare the effects of dietary fat sources known to vary in (n-3), (n-6), and (n-9) fatty acids on iron utilization and liver mineral concentrations. Male weanling rats were fed a diet containing 10, 35, or 100 μg/g iron in combination with saffower oil, flaxseed oil, olive oil, or beef tallow for 8 wk. Indicators of iron status, iron utilization, and liver iron concentrations were unaffected by an interaction between the fat source and iron concentration. Plasma copper was the only variable affected by an interaction between the fat source and dietary iron. Findings of this study demonstrate that flaxseed oil and olive oil may alter tissue minerals and affect iron utilization. Further studies should be conducted to establish the effect of varying (n-3), (n-6), and (n-9) fatty acids on trace mineral status and iron utilization. Data were presented in part at Experimental Biology 2000 as a poster session. A. D. Shotton and E. A. Droke, Dietary fat and iron modify immune function, FASEB J. 14, A239 (2000).  相似文献   

4.
The influence of the fatty acid composition of chylomicron remnant-like particles (CRLPs) on their uptake and induction of lipid accumulation in macrophages was studied. CRLPs containing triacylglycerol enriched in saturated, monounsaturated, n-6 or n-3 polyunsaturated fatty acids derived from palm, olive, corn or fish oil, respectively, and macrophages derived from the human monocyte cell line THP-1 were used. Lipid accumulation (triacylglycerol and cholesterol) in the cells was measured after incubation with CRLPs for 5, 24 and 48 h, and uptake over 24 h was determined using CRLPs radiolabelled with [3H]triolein. Total lipid accumulation in the macrophages was significantly greater with palm CRLPs than with the other three types of particle. This was mainly due to increased triacylglycerol concentrations, whereas changes in cholesterol concentrations did not reach significance. There were no significant differences in lipid accumulation after incubation with olive, corn or fish CRLPs. Palm and olive CRLPs were taken up by the cells at a similar rate, which was considerably faster than that observed with corn and fish CRLPs. These findings demonstrate that CRLPs enriched in saturated or monounsaturated fatty acids are taken up more rapidly by macrophages than those enriched in n-6 or n-3 polyunsaturated fatty acids, and that the faster uptake rate results in greater lipid accumulation in the case of saturated fatty acid-rich particles, but not monounsaturated fatty acid-rich particles. Thus, dietary saturated fatty acids carried in chylomicron remnants may enhance their propensity to induce macrophage foam cell formation.  相似文献   

5.
We have tested the different edible oil effects on the blood pressure (BP) control and the following glomerular protection. Six groups of 12-week-old male spontaneously hypertensive rats (SHR) (n = 5), have received different edible oils (fish, canola, palm, olive, and soybean) or a placebo by gavage for 13 weeks. Renal cortex was analyzed through light microscopy and stereology. Usual BP increase, glomerulosclerosis, glomerular enlargement, and glomeruli loss in SHR has been prevented (fish, canola and palm oils) or attenuated (olive and soybean oils) by these oil long-term administration. The most favorable effect has been seen in the fish oil administration (source of n-3 polyunsaturated fatty acids, PUFA, eicosapentaenoic and docosahexaenoic acids), followed by both canola and palm oils (source of n-3 PUFA plus n-9 monounsaturated, MUFA, and saturated fatty acid, respectively), and finally both olive and soybean oils (source of n-9 MUFA and n-6 PUFA, respectively).  相似文献   

6.
Effects of dietary eritadenine on liver microsomal delta6-desaturase activity and the fatty acid profile of phosphatidylcholine, cholesteryl esters, and triglycerides of liver microsomes or plasma were investigated in rats fed different fats (palm oil, olive oil, and safflower oil). The activity of delta6-desaturase was influenced by both dietary fat types and eritadenine. In rats fed control diets, delta6-desaturase activity was higher in the order of the palm oil, olive oil, and safflower oil groups. In rats fed eritadenine-supplemented diets, the enzyme activity was markedly decreased to a constant level irrespective of dietary fat type. The 20:4n-6/18:2n-6 ratio of phosphatidylcholine and cholesteryl esters, as compared with triglycerides, was highly sensitive to eritadenine. The results suggest that the activity of delta6-desaturase is regulated by dietary fats and eritadenine independently, and that the effect of eritadenine is stronger than that of dietary fats.  相似文献   

7.
This study investigated the effects of dietary omega-3 polyunsaturated fatty acids on calcium handling mechanisms in cardiac myocytes, with the hypothesis that this effect underlies some of the antiarrhythmic properties of these compounds. Adult male Sprague Dawley rats had their standard chow supplemented with either lard (57% saturated and 40% monounsaturated fat), canola oil (60% monounsaturated, 33% polyunsaturated) or fish oil (78% polyunsaturated). Isolated cardiac atrial myocytes from these animals were loaded with fluo-3AM and examined with laser scanning confocal microscopy. The dietary interventions resulted in considerable changes in the membrane phospholipid composition of cardiac cell membranes, particularly the ratio of n-6 to n-3 (2.17 with lard supplement and 1.28 with fish oil supplement). Calcium sparks in myocytes from rats which received saturated fat were significantly more prolonged than those from rats which received fish oil. (Lard = 105.4 +/- 18.9 ms; Fish oil = 43.5 +/- 4.7 ms: mean +/- s.e.m). The results for canola oil were intermediate (56.4 +/- 9.0 ms). The prolongation of the sparks in rats fed lard was primarily due to a higher proportion of sparks with long plateaus and/or slowed kinetics in this group. The frequency of sparks was not significantly different in cells from any group. We conclude that calcium handling mechanisms in rat atrial myocytes are affected by inclusion of different fats in the diet, correlated with changes in the cell membrane phospholipid composition, and speculate that this may underlie some of the antiarrhythmic properties of these dietary compounds.  相似文献   

8.
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.  相似文献   

9.
Our objective was to determine whether the endothelial nitric oxide synthase (eNOS) Glu298Asp polymorphism influences vascular response to raised NEFA enriched with saturated fatty acids (SFA) or long-chain (LC) n-3 polyunsaturated fatty acids (PUFA). Subjects were prospectively recruited for genotype (Glu298, n = 30 and Asp298, n = 29; balanced for age and gender) consumed SFA on two occasions, with and without the substitution of 0.07 g fat/kg body weight with LC n-3 PUFA, and with heparin infusion to elevate NEFA. Endothelial function was measured before and after NEFA elevation (240 min), with blood samples taken every 30 min. Flow-mediated dilation (FMD) decreased following SFA alone and increased following SFA+LC n-3 PUFA. There were 2-fold differences in the change in FMD response to the different fat loads between the Asp298 and Glu298 genotypes (P = 0.002) and between genders (P < 0.02). Sodium nitroprusside-induced reactivity, measured by laser Doppler imaging with iontophoresis, was significantly greater with SFA+LC n-3 PUFA in all female subjects (P < 0.001) but not in males. Elevated NEFA influences both endothelial-dependent and endothelial-independent vasodilation during the postprandial phase. Effects of fat composition appear to be genotype and gender dependent, with the greatest difference in vasodilatory response to the two fat loads seen in the Asp298 females.  相似文献   

10.
Endocannabinoids and N-acylethanolamines are lipid mediators regulating a wide range of biological functions including food intake. We investigated short-term effects of feeding rats five different dietary fats (palm oil (PO), olive oil (OA), safflower oil (LA), fish oil (FO) and arachidonic acid (AA)) on tissue levels of 2-arachidonoylglycerol, anandamide, oleoylethanolamide, palmitoylethanolamide, stearoylethanolamide, linoleoylethanolamide, eicosapentaenoylethanolamide, docosahexaenoylethanolamide and tissue fatty acid composition. The LA-diet increased linoleoylethanolamide and linoleic acid in brain, jejunum and liver. The OA-diet increased brain levels of anandamide and oleoylethanolamide (not 2-arachidonoylglycerol) without changing tissue fatty acid composition. The same diet increased oleoylethanolamide in liver. All five dietary fats decreased oleoylethanolamide in jejunum without changing levels of anandamide, suggesting that dietary fat may have an orexigenic effect. The AA-diet increased anandamide and 2-arachidonoylglycerol in jejunum without effect on liver. The FO-diet decreased liver levels of all N-acylethanolamines (except eicosapentaenoylethanolamide and docosahexaenoylethanolamide) with similar changes in precursor lipids. The AA-diet and FO-diet had no effect on N-acylethanolamines, endocannabinoids or precursor lipids in brain. All N-acylethanolamines activated PPAR-alpha. In conclusion, short-term feeding of diets resembling human diets (Mediterranean diet high in monounsaturated fat, diet high in saturated fat, or diet high in polyunsaturated fat) can affect tissue levels of endocannabinoids and N-acylethanolamines.  相似文献   

11.
In pigs fed a standard pig mash the contents of polyunsaturated fatty acids (PUFAs) of both the n-6 and n-3 series were significantly higher in the dark red mm adductores compared to the light coloured m longissimus lumborum. Perirenal fat had a higher concentration of saturated fatty acids (14:0,16:0, 18:0) than backfat, and a lower concentration of monounsaturated fatty acids, such as 16:ln-7 and 18:ln-9. Daily supplementation of 50 ml cod liver oil, rich in n-3 PUFAs, during the fourth and third week before slaughter led to a 1.4 to 1.7 times increase in the contents of n-3 PUFAs in muscles and fat depots. There was no difference between the incorporation of n-3 PUFAs in dark and light muscles. Perirenal fat contained more 20:5n-3 (EPA) and 22:6n-3 (DHA), but less 20:ln-9 (eicosenoic acid) than the backfat, after cod liver oil supplementation rich in these 3 fatty acids. Supplementation of cod liver oil reduced the n-6/n-3 fatty acid ratio in all anatomical locations examined.  相似文献   

12.
These studies were undertaken to determine how polyunsaturated (n-3 and n-6) and saturated triglycerides interact to regulate rates of low density lipoprotein (LDL) production and rates of receptor-dependent and receptor-independent LDL transport. Animals were fed diets containing 20% (by wt) hydrogenated coconut oil or diets in which the coconut oil was progressively removed and replaced with safflower oil or fish oil concentrate. Plasma LDL concentrations fell when either of the polyunsaturated triglycerides was substituted for saturated triglycleride in the diet; however, the reduction in LDL concentrations was greater with fish oil than with safflower oil at all ratios of polyunsaturated to saturated triglyceride that were examined. The lower plasma LDL concentrations when coconut oil was replaced with fish oil could be attributed almost entirely to a much greater increase in hepatic LDL receptor activity when fish oil was used as the substitute than when safflower oil was used as the substitute. To examine the effect of polyunsaturated triglycerides when used to supplement a high saturated fat diet rather than to replace saturated fat in the diet, animals were fed a diet containing 15% coconut oil (by wt) with or without an additional supplement of 5% fish oil or safflower oil. The addition of 15% coconut oil to low fat control diet increased the rate of LDL production causing circulating LDL levels to rise by 40%. The further supplementation of this high saturated fat diet with fish oil concentrate markedly increased hepatic LDL receptor activity causing plasma LDL concentrations to return to control values whereas supplementation with safflower oil had little effect. Thus, at least in the rat, supplementation of a high saturated fat diet with a fish oil concentrate lowers plasma LDL concentrations as effectively as removing the saturated fat from the diet, although in the former case, both the production and the receptor-dependent uptake of LDL are greatly increased.  相似文献   

13.
An influence of fish oils (rich in eicosapentaenoic acid, EPA) in modulating (a) the development of hypertension in the stroke prone spontaneously hypertensive rat (SHRSP) and (b) vascular neuroeffector mechanisms in the SHRSP was explored. Rats (SHRSP) were placed on a series of diets for a period of 13 weeks from 4 weeks of age. The fatty acid composition of the diets was derived from fish oil, olive oil, safflower oil or beef fat. After 13 weeks, rats fed diets containing fish oil (at a total dietary fat level of either 5% or 15%) had mean blood pressures approximately 20-25 mmHg lower than other SHRSP rats maintained on diets containing either olive oil, safflower oil or beef fat. The dietary schedules providing fish oil depressed the contractile responses mediated by sympathetic nerve stimulation in the mesenteric vascular bed preparation. The results suggest that the n-3 polyunsaturated fatty acids retard the development of hypertension in the SHRSP rat and modulate the contractile responses of blood vessels mediated by sympathetic nerves in the isolated perfused mesenteric vascular bed preparation.  相似文献   

14.
15.
We investigated how dietary fats and oils of different fatty acid composition influence the seasonal change of body mass, fur colour, testes size and torpor in Djungarian hamsters, Phodopus sungorus, maintained from autumn to winter under different photoperiods and temperature regimes. Dietary fatty acids influenced the occurrence of spontaneous torpor (food and water ad libitum) in P. sungorus maintained at 18°C under natural and artificial short photoperiods. Torpor was most pronounced in individuals on a diet containing 10% safflower oil (rich in polyunsaturated fatty acids), intermediate in individuals on a diet containing 10% olive oil (rich in monounsaturated fatty acids) and least pronounced in individuals on a diet containing 10% coconut fat (rich in saturated fatty acids). Torpor in P. sungorus on chow containing no added fat or oil was intermediate between those on coconut fat and olive oil. Dietary fatty acids had little effect on torpor in animals maintained at 23°C. Body mass, fur colour and testes size were also little affected by dietary fatty acids. The fatty acid composition of brown fat from hamsters maintained at 18°C and under natural photoperiod strongly reflected that of the dietary fatty acids. Our study suggests that the seasonal change of body mass, fur colour and testes size are not significantly affected by dietary fatty acids. However, dietary fats influence the occurrence of torpor in individuals maintained at low temperatures and that have been photoperiodically primed for the display of torpor.Abbreviations BAT brown adipose tissue - bm body mass - FA fatty acid(s) - MR metabolic rate - MUFA monounsaturated fatty acid(s) - PUFA polyunsaturated fatty acid(s) - SFA saturated fatty acid(s) - T a air temperature - T b body temperature - Ts body surface temperature(s) - TNZ thermoneutral zone - UFA unsaturated fatty acid(s)  相似文献   

16.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

17.
Avula CP  Fernandes G 《Life sciences》1999,65(22):2373-2383
The present study was undertaken to investigate the effect of n-9, n-6, and n-3 dietary fatty acid ethyl esters on basal (uninduced) and Fe2+/ascorbate (induced) lipid peroxidation (LPO) in salivary gland (SG) of mice. Feeding n-3 ethyl ester polyunsaturated fatty acids (PUFA) increased the uninduced and induced LPO in SG homogenates. In contrast, feeding olive oil ethyl esters (n-9) significantly lowered the induced and uninduced LPO in SG tissue. Salivary gland susceptibility to LPO increased in the order of: olive oil < corn oil < safflower oil < n-3 ethyl esters. Olive oil esters in the diet increased primarily the 18:1 levels in SG tissue. Whereas feeding n-3 PUFA notably increased the superoxide dismutase (SOD) and catalase activities in SG homogenates, no significant changes were seen between n-9 and n-6 PUFA-fed mice. Lower levels of Vitamin E (Vit E) in the tissues of n-3 PUFA-fed mice indicate that the higher the dietary lipid unsaturation, the higher the requirement for Vit E in the diet. Our results indicate that, similar to other organs, salivary gland susceptibility to uninduced or induced oxidation depends on the source of dietary PUFA. In conclusion, feeding olive oil increases the resistance of SGs to induced and uninduced LPO.  相似文献   

18.
The effect of sex, source of saturated fat (lard v. palm oil) and glycerol inclusion in the fattening diet on composition and fatty acid positional distribution in the triglyceride molecule was studied in pigs from 78 to 110 kg BW. Average daily gain and carcass characteristics, including ham and loin weight, were not affected by dietary treatment but sex affected backfat depth (P<0.01). A significant interaction between sex and glycerol inclusion was observed; dietary glycerol increased lean content in gilts but not in barrows (P<0.05 for the interaction). Individual and total saturated fatty acid (SFA) concentrations were greater in barrows than in gilts. In contrast, the concentration of total polyunsaturated fatty acids (PUFA) and of C18:2n-6, C18:3n-3, C20:3n-9 and C20:4n-6 in the intramuscular fat (IMF) was higher (P<0.05) in gilts than in barrows. Sex did not affect total monounsaturated fatty acids (MUFA) concentration in the IMF. The proportion of SFA in the subcutaneous fat (SF) was higher in barrows than in gilts (P<0.001). Within the individual SFA, sex affected only the concentrations of C14:0 and C16:0 (P<0.001). Dietary fat did not affect total SFA or PUFA concentrations of the IMF but the subcutaneous total MUFA concentration tended to be higher (P=0.079) in pigs fed lard than in pigs fed palm oil. Dietary glycerol increased total MUFA and C18:1n-9 concentration in the IMF and increased total MUFA and decreased C18:2n-6, C18:3n-3 and total PUFA concentrations in the SF. The data indicate that altering the fatty acid composition of the triglyceride molecule at the 2-position, by dietary intervention during the fattening phase, is very limited.  相似文献   

19.
Lipid transfer inhibitor protein (LTIP) regulates cholesteryl ester transfer protein (CETP) activity by selectively impeding lipid transfer events involving low density lipoproteins (LDLs). We previously demonstrated that LTIP activity is suppressed in a dose-dependent manner by sodium oleate and that its activity can be blocked by physiological levels of free fatty acids [R.E. Morton, D. J. Greene, Arterioscler. Thromb. Vasc. Biol. 17 (1997)]. These data further suggested that palmitate has greater LTIP suppressive activity than oleate. In this report we define the ability of the major non-esterified fatty acids (NEFAs) in plasma to modulate LTIP activity. The greater suppression of LTIP activity by palmitate compared to oleate noted above was also seen in lipid transfer assays with various lipoprotein substrates and in the presence of albumin, showing that the relative effects of these two NEFAs are independent of assay conditions. To assess the effect of other NEFAs on LTIP activity, pure NEFAs were added to assays containing (3)H-cholesteryl ester labeled LDLs, unlabeled high density lipoproteins (HDLs) and CETP+/-LTIP. Whereas myristate, palmitate, stearate, oleate and linoleate stimulated CETP activity to varying extents, all NEFAs suppressed LTIP activity. Among these NEFAs, LTIP suppressive activity was greatest for the long-chain saturated and monounsaturated NEFAs. In contrast, linoleate and myristate were poor inhibitors of LTIP activity. The effects of increasing amounts of a given NEFA on LTIP activity correlated well with the increase in LDL negative charge induced by that NEFA, yet this relationship was unique for each NEFA, especially stearate. Notably, as measured by fluorescence anisotropy, the suppression of LTIP was highly and negatively correlated with the decreased order in the molecular packing of lipoprotein surface phospholipids caused by all NEFAs. Long-chain, saturated and monounsaturated NEFAs appear to be most effective in this regard partly because of their preferential association with LDLs where LTIP inhibition likely takes place. We hypothesize that NEFAs suppress LTIP activity by perturbing the surface properties of LDLs and counteracting the heightened molecular packing normally caused by LTIP. Diets rich in long-chain saturated and monounsaturated fatty acids may lead to a greater suppression of LTIP activity in vivo, which would allow LDLs to participate more actively in CETP-mediated lipid transfer reactions.  相似文献   

20.
The effect of altering cardiac concentrations of precursors and inhibitors of prostaglandin synthesis by varying fat intake was determined in rats injected with the cardiotoxic drug isoproterenol, following pretreatment with aspirin or potassium phosphate buffer solution. Prior to injection, four groups of rats were fed either a low-fat diet (3.7 energy percent coconut oil 3.7 energy percent safflower oil) or a high-fat diet (3.7 energy percent safflower oil-36.4 energy percent coconut oil mixture or 40.1 energy percent safflower oil.) Mortality as well as fatty acid composition of cardiac lipids changed in response to altered kinds and amounts of fats. Mortality and cardiac C20:4/C22:6 ratio were lowered by feeding 3.7 energy percent coconut oil, and increased by feeding 40.1 energy percent safflower oil. Aspirin reduced mortality in rats fed 40.1 energy percent safflower oil, but not in rats fed other diets. Results suggest that dietary manipulations which increase tissue content of polyunsaturated fatty acids of the n-6 type relative to those of the n-3 type may increase sensitivity to isoproterenol, and that effectiveness of aspirin in reducing isoproterenol-induced mortality depends upon the n-6/n-3 ratio of cardiac fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号