首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Esophageal distension causes simultaneous relaxation of the lower esophageal sphincter (LES) and crural diaphragm. The mechanism of crural diaphragm relaxation during esophageal distension is not well understood. We studied the motion of crural and costal diaphragm along with the motion of the distal esophagus during esophageal distension-induced relaxation of the LES and crural diaphragm. Wire electrodes were surgically implanted into the crural and costal diaphragm in five cats. In two additional cats, radiopaque markers were also sutured into the outer wall of the distal esophagus to monitor esophageal shortening. Under light anesthesia, animals were placed on an X-ray fluoroscope to monitor the motion of the diaphragm and the distal esophagus by tracking the radiopaque markers. Crural and costal diaphragm electromyograms (EMGs) were recorded along with the esophageal, LES, and gastric pressures. A 2-cm balloon placed 5 cm above the LES was used for esophageal distension. Effects of baclofen, a GABA(B) agonist, were also studied. Esophageal distension induced LES relaxation and selective inhibition of the crural diaphragm EMG. The crural diaphragm moved in a craniocaudal direction with expiration and inspiration, respectively. Esophageal distension-induced inhibition of the crural EMG was associated with sustained cranial motion of the crural diaphragm and esophagus. Baclofen blocked distension-induced LES relaxation and crural diaphragm EMG inhibition along with the cranial motion of the crural diaphragm and the distal esophagus. There is a close temporal correlation between esophageal distension-mediated LES relaxation and crural diaphragm inhibition with the sustained cranial motion of the crural diaphragm. Stretch caused by the longitudinal muscle contraction of the esophagus during distension of the esophagus may be important in causing LES relaxation and crural diaphragm inhibition.  相似文献   

2.
The esophagogastric junction (EGJ) is guarded by two sphincters, a smooth muscle lower esophageal sphincter (LES) and a skeletal muscle crural diaphragm. These two sphincters relax simultaneously under certain physiological conditions, i.e., swallowing, belching, vomiting, transient LES relaxation, and esophageal distension. Esophageal distension-induced crural diaphragm relaxation is mediated through vagal afferents that are thought to exert inhibitory influence on the central mechanism (brain stem) of crural diaphragm contraction. We conducted studies in 10 cats to determine whether a mechanism of crural diaphragm relaxation was located at the level of the neuromuscular junction and/or muscle. Stimulation of the crural diaphragm neuromuscular junction through 1) the electrodes implanted in the muscle and 2) the bilateral phrenic nerve resulted in an increase in EGJ pressure. Nicotinic receptor blockade (pancuronium, 0.2 mg/kg) abolished the EGJ pressure increase caused by electrical stimulation of the neuromuscular junction. Esophageal distension and bolus-induced secondary esophageal peristalsis caused relaxation of the EGJ during the stimulation of the neuromuscular junction. Bilateral phrenicotomy and vagotomy had no influence on this relaxation. These data suggest the existence of a peripheral mechanism of crural diaphragm inhibition. This peripheral inhibitory mechanism may reside at the level of either the neuromuscular junction or the skeletal muscle.  相似文献   

3.
We investigated the mechanisms of esophageal distension-induced reflexes in decerebrate cats. Slow air esophageal distension activated esophago-upper esophageal sphincter (UES) contractile reflex (EUCR) and secondary peristalsis (2P). Rapid air distension activated esophago-UES relaxation reflex (EURR), esophago-glottal closure reflex (EGCR), esophago-hyoid distraction reflex (EHDR), and esophago-esophagus contraction reflex (EECR). Longitudinal esophageal stretch did not activate these reflexes. Magnitude and timing of EUCR were related to 2P but not injected air volume. Cervical esophagus transection did not affect the threshold of any reflex. Bolus diversion prevented swallow-related esophageal peristalsis. Lidocaine or capsaicin esophageal perfusion, esophageal mucosal layer removal, or intravenous baclofen blocked or inhibited EURR, EGCR, EHDR, and EECR but not EUCR or 2P. Thoracic vagotomy blocked all reflexes. These six reflexes can be activated by esophageal distension, and they occur in two sets depending on inflation rate rather than volume. EUCR was independent of 2P, but 2P activated EUCR; therefore, EUCR may help prevent reflux during peristalsis. All esophageal peristalsis may be secondary to esophageal stimulation in the cat. EURR, EHDR, EGCR, and EECR may contribute to belching and are probably mediated by capsaicin-sensitive, rapidly adapting mucosal mechanoreceptors. GABA-B receptors also inhibit these reflexes. EUCR and 2P are probably mediated by slowly adapting muscular mechanoreceptors. All six reflexes are mediated by vagal afferent fibers.  相似文献   

4.
Activation of gastric vagal mechanoreceptors by distention is thought to be the trigger for transient lower esophageal sphincter relaxations (TLESR), which lead to gastroesophageal reflux. The contribution of higher-threshold gastric splanchnic mechanoreceptors is uninvestigated. GABA(B) receptor agonists, including baclofen, potently reduce triggering of TLESR by low-level gastric distention. We aimed to determine first whether this effect of baclofen is maintained at high-level distention and second the role of splanchnic pathways in triggering TLESR. Micromanometric/pH studies in conscious ferrets showed that intragastric glucose infusion (25 ml) increased triggering of TLESR and reflux. Both were significantly reduced by baclofen (7 micromol/kg ip) (P < 0.05). When 40 ml of air was added to the glucose infusion, more TLESR occurred than with glucose alone (P < 0.01). These were also reduced by baclofen (P < 0.001). TLESR after glucose/air infusion were assessed before and after splanchnectomy (2-4, 9-11, and 23-25 days), which revealed no change. Baclofen inhibits TLESR after both low- and high-level gastric distention. Splanchnic pathways do not contribute to increased triggering of TLESR by high-level gastric distention.  相似文献   

5.
It has long been known that the esophageal distension produced by swallowing elicits a powerful proximal gastric relaxation. Gastroinhibitory control by the esophagus involves neural pathways from esophageal distension-sensitive neurons in the nucleus tractus solitarius centralis (cNTS) with connections to virtually all levels of the dorsal motor nucleus of the vagus (DMV). We have shown recently that cNTS responses are excitatory and primarily involve tyrosine hydroxylase-immunoreactive cells, whereas the DMV response involves both an alpha1 excitatory and an alpha2 inhibitory response. In the present study, using an esophageal balloon distension to evoke gastric relaxation (esophageal-gastric reflex, EGR), we investigated the peripheral pharmacological basis responsible for this reflex. Systemic administration of atropine methyl nitrate reduced the amplitude of the gastric relaxation to 52.0+/-4.4% of the original EGR, whereas NG-nitro-L-arginine methyl ester (L-NAME) reduced it to 26.3+/-7.2% of the original EGR. Concomitant administration of atropine methyl nitrate and L-NAME reduced the amplitude of the gastric relaxation to 4.0+/-2.5% of control. This reduction in the amplitude of induced EGR is quite comparable (4.3+/-2.6%) to that seen when the animal was pretreated with the nicotinic ganglionic blocker hexamethonium. In the presence of bethanechol, the amplitude of the esophageal distension-induced gastric relaxation was increased to 177.0+/-10.0% of control; administration of L-NAME reduced this amplitude to 19.9+/-9.5%. Our data provide a clear demonstration that the gastroinhibitory control by the esophagus is mediated via a dual vagal innervation consisting of inhibitory nitrergic and excitatory cholinergic transmission.  相似文献   

6.
BACKGROUND AND AIMS: the neural mechanisms of distension-induced esophagoupper esophageal sphincter (UES) reflexes have not been explored in humans. We investigated the modulation of these reflexes by mucosal anesthesia, acid exposure, and GABA(B) receptor activation. In 55 healthy human subjects, UES responses to rapid esophageal air insufflation and slow balloon distension were examined before and after pretreatment with 15 ml of topical esophageal lidocaine, esophageal HCl infusion, and baclofen 40 mg given orally. In response to rapid esophageal distension, UES can variably relax or contract. Following a mucosal blockade by topical lidocaine, the likelihood of a UES relaxation response was reduced by 11% (P < 0.01) and the likelihood of a UES contractile response was increased by 14% (P < 0.001) without alteration in the overall UES response rate. The UES contractile response to rapid esophageal air insufflation was also increased by 8% (P < 0.05) following sensitization by prior mucosal acid exposure. The UES contractile response, elicited by balloon distension, was regionally dependent (P < 0.05) (more frequent and of higher amplitude with proximal esophageal distension), and the response was attenuated by topical lidocaine (P < 0.05). Baclofen (40 mg po) had no effect on these UES reflexes. Abrupt gaseous esophageal distension activates simultaneously both excitatory and inhibitory pathways to the UES. Partial blockade of the mucosal mechanosensitive receptors permits an enhanced UES contractile response mediated by deeper esophageal mechanoreceptors. Activation of acid-sensitive esophageal mucosal chemoreceptors upregulates the UES contractile response, suggestive of a protective mechanism.  相似文献   

7.
Intrinsic reflexes of the lower esophageal sphincter (LES) are mediated by specific arrangements of excitatory and inhibitory nerves. We have previously described an excitatory reflex at the feline LES mediated by a bombesin-like peptide (BN) which causes release of substance P (SP) to directly contract the LES. Galanin is a neurotransmitter in the enteric nervous system which colocalizes in neurons containing vasoactive intestinal peptide (VIP). The aims of this study were to determine: (1) the distribution of galanin at the feline LES; (2) the effect of galanin on basal LES tone; (3) the effect of galanin on agonist-induced LES contractions by BN, SP and bethanechol; and (4) the effect of galanin on LES relaxation induced by esophageal distension and exogenous VIP. Galanin-like immunoreactivity (galanin-LI) was localized in neurons that were widely distributed throughout the LES and adjacent organs. Galanin-LI was most abundant in the circular muscle, muscularis mucosa and myenteric plexus of the LES. In anesthetized cats, intra-arterial galanin had no effect on basal LES pressure in a dose range of 10−11 to 10−6 g/kg. Galanin (5 10−7 g/kg) reduced the LES contractile response to SP by 65 ± 8% (P = 0.0001). This galanin-mediated inhibition of SP was not blocked by tetrodotoxin. Galanin similarly decreased the LES contractile response to BN (63 ± 7%, P = 0.005) and bethanechol (55 ± 17%, P = 0.012). Galanin had no effect on the LES relaxation induced by esophageal distension or exogenous VIP. We conclude: (1) galanin-LI is present in neurons at the feline LES; (2) galanin has no effect on basal sphincter tone, but inhibits contractions of the LES by both direct and indirect agonists; and (3) galanin does not effect the LES relaxation induced by esophageal distension or VIP.  相似文献   

8.
To characterize the neural pathways involved in lower esophageal sphincter relaxation, intraluminal pressures from the lower esophageal sphincter of the opossum were monitored during swallowing, vagal efferent nerve stimulation, and intraluminal balloon distention in the presence and absence of pharmacologic antagonism of putative neurotransmitters. The combination of atropine, hexamethonium, and 5-methoxydimethyltryptamine, which is known to block ganglionic transmission in the vagal inhibitory pathway to the lower esophageal sphincter, significantly antagonized LES relaxation induced by both swallowing and vagal stimulation, but did not affect the LES relaxation induced by balloon distention. Administration of the nitric oxide synthase inhibitor N omega nitro-L-arginine methyl ester, on the other hand, markedly inhibited LES relaxation induced by vagal stimulation, swallowing, and balloon distention, and this effect was reversed by administration of the nitric oxide synthase substrate L-arginine. These studies indicate that the distension-induced intramural pathway mediating LES relaxation does not involve ganglionic transmission similar to that of the vagal inhibitory pathway to the LES. However, the LES relaxation induced by all forms of stimuli appears to depend on nitric oxide as a final mediator.  相似文献   

9.
Swallow and esophageal distension-induced relaxations of the lower esophageal sphincter (LES) are associated with an orad movement of the LES because of a concurrent esophageal longitudinal muscle contraction. We hypothesized that the esophageal longitudinal muscle contraction induces a cranially directed mechanical stretch on the LES and therefore studied the effects of a mechanical stretch on the LES pressure. In adult opossums, a silicon tube was placed via mouth into the esophagus and laparotomy was performed. Two needles with silk sutures were passed, 90 degrees apart, through the esophageal walls and silicon tube, 2 cm above the LES. The tube was withdrawn, and one end of each of the four sutures was anchored to the esophageal wall and the other end exited through the mouth to exert graded cranially directed stretch on the LES by using pulley and weights. A cranially directed stretch caused LES relaxation, and with the cessation of stretch there was recovery of the LES pressure. The degree an d duration of LES relaxation increased with the weight and the duration of stretch, respectively. The mean LES relaxation in all animals was 77.7 +/- 4.7%. The required weight to induce maximal LES relaxation differed in animals (714 +/- 348 g). N(G)-nitro-L-arginine, a nitric oxide inhibitor, blocked the axial stretch-induced LES relaxation almost completely (from 78 to 19%). Our data support the presence of an axial stretch-activated inhibitory mechanism in the LES. The role of axial stretch in the LES relaxation induced by swallow and esophageal distension requires further investigation.  相似文献   

10.
Activation of esophageal mechanosensors excites neurons in and near the central nucleus of the solitary tract (NSTc). In turn, NSTc neurons coordinate the relaxation of the stomach [i.e., the receptive relaxation reflex (RRR)] by modulating the output of vagal efferent neurons of the dorsal motor nucleus of the vagus (DMN). The NSTc area contains neurons with diverse neurochemical phenotypes, including a large population of catecholaminergic and nitrergic neurons. The aim of the present study was to determine whether either one of these prominent neuronal phenotypes was involved in the RRR. Immunohistochemical techniques revealed that repetitive esophageal distension caused 53% of tyrosine hydroxylase-immunoreactive (TH-ir) neurons to colocalize c-Fos in the NSTc. No nitric oxide synthase (NOS)-ir neurons in the NSTc colocalized c-Fos in either distension or control conditions. Local brain stem application (2 ng) of alpha-adrenoreceptor antagonists (i.e., alpha1-prazosin or alpha2-yohimbine) significantly reduced the magnitude of the esophageal distension-induced gastric relaxation to approximately 55% of control conditions. The combination of yohimbine and prazosin reduced the magnitude of the reflex to approximately 27% of control. In contrast, pretreatment with either the NOS-inhibitor NG-nitro-l-arginine methyl ester or the beta-adrenoceptor antagonist propranolol did not interfere with esophageal distension-induced gastric relaxation. Unilateral microinjections of the agonist norepinephrine (0.3 ng) directed at the DMN were sufficient to mimic the transient esophageal-gastric reflex. Our data suggest that noradrenergic, but not nitrergic, neurons of the NSTc play a prominent role in the modulation of the RRR through action on alpha1- and alpha2-adrenoreceptors. The finding that esophageal afferent stimulation alone is not sufficient to activate NOS-positive neurons in the NSTc suggests that these neurons may be strongly gated by other central nervous system inputs, perhaps related to the coordination of swallowing or emesis with respiration.  相似文献   

11.
Acute changes in blood glucose concentration have major effects on gastrointestinal motor function. Patients with diabetes mellitus have an increased prevalence of gastroesophageal reflux. Transient lower esophageal sphincter (LES) relaxation (TLESR) is the most common sphincter mechanism underlying reflux. The aim of this study was to investigate the effect of acute hyperglycemia on triggering TLESRs evoked by gastric distension in healthy volunteers. TLESRs were stimulated by pressure-controlled and volume-controlled (500 ml) gastric distension using an electronic barostat and performed on separate days. On each day, esophageal manometry was performed in the sitting position during gastric distension for 1 h under euglycemia (5 mM), and either marked hyperglycemia (15 mM) or physiological hyperglycemia (8 mM) in randomized order was maintained by a glucose clamp. Marked hyperglycemia doubled the rate of TLESRs in response to both pressure-controlled [5 (3-10.5, median or interquartile range) to 10 (9.5-14.5) per hour, P < 0.02] and volume-controlled [4 (2.5-7.5) to 10.5 (7-12.5) per hour, P < 0.02] gastric distension but had no effect on basal LES pressure. Physiological hyperglycemia had no effect on the triggering of TLESRs or basal LES pressure. In healthy human subjects, marked hyperglycemia increases the rate of TLESRs. Increase in the rate of TLESRs is independent of proximal gastric wall tension. Mechanisms underlying the effect remain to be determined. Hyperglycemia may be an important factor contributing to the increased esophageal acid exposure in patients with diabetes mellitus.  相似文献   

12.
Lower esophageal sphincter (LES) relaxation and esophageal body inhibition co-occur during esophageal peristalsis but not necessarily during pharyngeal stimulation or transient LES relaxation (tLESR). This study examined these relationships and the impact on reflux. Nine young volunteers were studied. An artificial high-pressure zone (HPZ) was established, and pH was recorded 8 and 5 cm proximal to the LES. Pharyngeal stimulation was by water injection and gastric distension with liquid or gas. Peristalsis, pharyngeal stimulation, and spontaneous events were recorded. Swallowing relaxed the LES in 100% of trials (the HPZ in 80%) and caused no reflux. Pharyngeal stimulation relaxed the LES in two-thirds of trials, had no effect on the HPZ, and caused no reflux. Gastric distension was associated with 117 tLESRs, 48% with acid reflux, and 32% with gas reflux; there was no effect on the HPZ. We conclude that LES relaxation is a necessary but not sufficient condition for reflux. LES relaxation and esophageal body inhibition are independent events that may be concurrent (swallowing) or dissociated (tLESR).  相似文献   

13.
To investigate GABA(B) receptors along vagal afferent pathways, we recorded from vagal afferents, medullary neurons, and vagal efferents in ferrets. Baclofen (7-14 micromol/kg i.v.) reduced gastric tension receptor and nucleus tractus solitarii neuronal responses to gastric distension but not gastroduodenal mucosal receptor responses to cholecystokinin (CCK). GABA(B) antagonists CGP-35348 or CGP-62349 reversed effects of baclofen. Vagal efferents showed excitatory and inhibitory responses to distension and CCK. Baclofen (3 nmol i.c.v. or 7-14 micromol/kg i.v.) reduced both distension response types but reduced only inhibitory responses to CCK. CGP-35348 (100 nmol i.c.v. or 100 micromol/kg i.v.) reversed baclofen's effect on distension responses, but inhibitory responses to CCK remained attenuated. They were, however, reversed by CGP-62349 (0.4 nmol i.c.v.). In conclusion, GABA(B) receptors inhibit mechanosensitivity, not chemosensitivity, of vagal afferents peripherally. Mechanosensory input to brain stem neurons is also reduced centrally by GABA(B) receptors, but excitatory chemosensory input is unaffected. Inhibitory mechano- and chemosensory inputs to brain stem neurons (via inhibitory interneurons) are both reduced, but the pathway taken by chemosensory input involves GABA(B) receptors that are insensitive to CGP-35348.  相似文献   

14.
The effects of the distension of the lower oesophageal sphincter were studied on the inspiratory activity of 96 medullary neurons located either in the dorsal or in the ventral respiratory groups and on the inspiratory activity of the costal and crural parts of the diaphragm in barbiturate anaesthetized cat. Inhibition of the inspiratory activity of the crural part of the diaphragm during oesophageal distension was never associated with significant changes of the medullary inspiratory neuron discharge. These results suggest that the observed crural inhibition is due to reflex loop that does not include the inspiratory neurons belonging to the dorsal and the ventral respiratory groups.  相似文献   

15.
Gastric distension is a potent stimulus of transient lower esophageal sphincter (LES) relaxation. To investigate the time effect of prolonged gastric distension on the rate of transient LES relaxations, LES pressure, and the motor and sensory functions of the proximal stomach, we performed a continuous isobaric distension of the proximal stomach at the 75% threshold pressure for discomfort for 2 h in seven healthy subjects. A multilumen assembly incorporating a sleeve and an electronic barostat was used. The rate of transient LES relaxations (n/30 min) was constant during the first hour [4.1 +/- 1.2 (0-30 min) and 5.4 +/- 1.1 (30-60 min)] but markedly decreased (P < 0.05) in the second hour [2.1 +/- 0.5 (60-90 min) and 2.3 +/- 0.9 (90-120 min)], whereas LES pressure, baseline volume and volume waves within the gastric bag, hunger, and fullness did not change throughout the experiment. It is concluded that the rate of transient LES relaxations decreases with time during prolonged gastric distension, thus suggesting that this type of stimulus should not be used in sequential experimental conditions.  相似文献   

16.
Patients with gastroesophageal reflux disease show an increase in esophagogastric junction (EGJ) distensibility and in frequency of transient lower esophageal sphincter relaxations (TLESR) induced by gastric distension. The objective was to study the effect of localized EGJ distension on triggering of TLESR in healthy volunteers. An esophageal manometric catheter incorporating an 8-cm internal balloon adjacent to a sleeve sensor was developed to enable continuous recording of EGJ pressure during distension of the EGJ. Inflation of the balloon doubled the cross-section of the trans-sphincteric portion of the catheter from 5 mm OD (round) to 5 × 11 mm (oval). Ten healthy subjects were included. After catheter placement and a 30-min adaptation period, the EGJ was randomly distended or not, followed by a 45-min baseline recording. Subjects consumed a refluxogenic meal, and recordings were made for 3 h postprandially. A repeat study was performed on another day with EGJ distension status reversed. Additionally, in one subject MRI was performed to establish the exact position of the balloon in the inflated state. The number of TLESR increased during periods of EGJ distension with the effect being greater after a meal [baseline: 2.0(0.0-4.0) vs. 4.0(1.0-11.0), P=0.04; postprandial: 15.5(10.0-33.0) vs. 22.0(17.0-58.0), P=0.007 for undistended and distended, respectively]. EGJ distension augments meal-induced triggering of TLESR in healthy volunteers. Our data suggest the existence of a population of vagal afferents located at sites in/around the EGJ that may influence triggering of TLESR.  相似文献   

17.
The aim of this study was to determine the role of the superior laryngeal nerve (SLN) in the following esophageal reflexes: esophago-upper esophageal sphincter (UES) contractile reflex (EUCR), esophago-lower esophageal sphincter (LES) relaxation reflex (ELIR), secondary peristalsis, pharyngeal swallowing, and belch. Cats (N = 43) were decerebrated and instrumented to record EMG of the cricopharyngeus, thyrohyoideus, geniohyoideus, and cricothyroideus; esophageal pressure; and motility of LES. Reflexes were activated by stimulation of the esophagus via slow balloon or rapid air distension at 1 to 16 cm distal to the UES. Slow balloon distension consistently activated EUCR and ELIR from all areas of the esophagus, but the distal esophagus was more sensitive than the proximal esophagus. Transection of SLN or proximal recurrent laryngeal nerves (RLN) blocked EUCR and ELIR generated from the cervical esophagus. Distal RLN transection blocked EUCR from the distal cervical esophagus. Slow distension of all areas of the esophagus except the most proximal few centimeters activated secondary peristalsis, and SLN transection had no effect on secondary peristalsis. Slow distension of all areas of the esophagus inconsistently activated pharyngeal swallows, and SLN transection blocked generation of pharyngeal swallows from all levels of the esophagus. Slow distension of the esophagus inconsistently activated belching, but rapid air distension consistently activated belching from all areas of the esophagus. SLN transection did not block initiation of belch but blocked one aspect of belch, i.e., inhibition of cricopharyngeus EMG. Vagotomy blocked all aspects of belch generated from all areas of esophagus and blocked all responses of all reflexes not blocked by SLN or RLN transection. In conclusion, the SLN mediates all aspects of the pharyngeal swallow, no portion of the secondary peristalsis, and the EUCR and ELIR generated from the proximal esophagus. Considering that SLN is not a motor nerve for any of these reflexes, the role of the SLN in control of these reflexes is sensory in nature only.  相似文献   

18.
19.
Electroacupuncture (EA) at Neiguan-Jianshi acupoints through an opioid mechanism inhibits the cardiovascular pressor response induced by mechanical stimulation of the stomach. Because nociceptin also may regulate cardiovascular activity through its action in the brain stem, we hypothesized that this neuromodulator serves a role in the EA-related inhibitory effect. Blood pressure in ventilated male Sprague-Dawley rats (400-600 g) anesthetized by ketamine and alpha-chloralose was measured during balloon inflation of the stomach. Gastric distension with 6-8 ml of air induced consistent pressor reflexes of 26 +/- 1 mmHg that could be repeated every 10 min for 100 min. When nociceptin (10 nM) was microinjected into the rostral ventrolateral medulla (rVLM), the pressor response induced by gastric distension was inhibited by 68 +/- 6%. Thirty minutes of EA also decreased the reflex response by 75 +/- 11%; microinjection of saline into the rVLM did not alter the inhibitory effect of EA. In contrast, microinjection of a nociceptin receptor antagonist into the rVLM promptly reversed the EA response. Pretreatment with the opioid receptor antagonist naloxone did not influence the EA-like inhibitory effect of nociceptin on the distension-induced pressor reflex (22 +/- 1 to 8 +/- 2 mmHg). Furthermore, a mu-opioid receptor agonist microinjected into the rVLM after microinjection of a nociceptin receptor antagonist during EA promptly reversed the nociceptin receptor antagonist-related inhibition of the EA effect. Thus, in addition to the classical opioid system, nociceptin, through opioid receptor-like-1 receptor stimulation in the rVLM, participates in the modulatory influence of EA on reflex-induced increases in blood pressure.  相似文献   

20.
S Yamato  J K Saha  R K Goyal 《Life sciences》1992,50(17):1263-1272
Studies were performed in the opossum to define the role of the L-arginine-nitric oxide (NO) pathway in lower esophageal sphincter (LES) relaxation to swallowing and vagal stimulation in viv and intramural nerve stimulation in vitro. In vivo, L-NAME, a water soluble NO synthase (NOS) inhibitor, caused antagonism of LES relaxation due to reflex-induced swallowing. L-NAME (20 mg/kg i.v.) reduced the amplitude of swallow induced relaxation from 88% to 28%. LES relaxation due to electrical stimulation of peripheral end of decentralized vagus nerve was also antagonized. The effects of L-NAME were reversed by L-arginine, but not by D-arginine. L-NAME treatment did not antagonize LES relaxation to intravenous administration of isoproterenol. In vitro, NO and sodium nitroprusside (SNP) caused a decrease in the sphincter tone. The relaxing effect caused by NO and SNP was not antagonized by tetrodotoxin or omega-conotoxin. Inhibitors of NO synthase, L-NMMA and L-NNA, caused slight increase in the spontaneous resting LES tone and concentration-dependent antagonism of electrical field stimulation (EFS) induced LES relaxation. L-NNA (10(-4)M) abolished EFS induced LES relaxation at low frequencies (less than 5 Hz) and antagonized the relaxation to a value 20% of the control at 20 Hz. The antagonistic action of L-NMMA and L-NNA was unaffected by D-arginine but was reversed by L-arginine. The inhibitory effect of NO, SNP, or two other putative inhibitory neurotransmitters (VIP and CGRP) on the LES was not antagonized by L-NNA. These studies show that inhibitors of NO synthase selectively antagonize LES relaxation to all three modes of intramural inhibitory nerve stimulation including physiological swallowing. These studies suggest that the L-arginine-nitric oxide pathway is involved in physiological relaxation of the LES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号