首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The annotation of protein function at genomic scale is essential for day-to-day work in biology and for any systematic approach to the modeling of biological systems. Currently, functional annotation is essentially based on the expansion of the relatively small number of experimentally determined functions to large collections of proteins. The task of systematic annotation faces formidable practical problems related to the accuracy of the input experimental information, the reliability of current systems for transferring information between related sequences, and the reproducibility of the links between database information and the original experiments reported in publications. These technical difficulties merely lie on the surface of the deeper problem of the evolution of protein function in the context of protein sequences and structures. Given the mixture of technical and scientific challenges, it is not surprising that errors are introduced, and expanded, in database annotations. In this situation, a more realistic option is the development of a reliability index for database annotations, instead of depending exclusively on efforts to correct databases. Several groups have attempted to compare the database annotations of similar proteins, which constitutes the first steps toward the calibration of the relationship between sequence and annotation space.  相似文献   

4.
MOTIVATION: The gap between the amount of newly submitted protein data and reliable functional annotation in public databases is growing. Traditional manual annotation by literature curation and sequence analysis tools without the use of automated annotation systems is not able to keep up with the ever increasing quantity of data that is submitted. Automated supplements to manually curated databases such as TrEMBL or GenPept cover raw data but provide only limited annotation. To improve this situation automatic tools are needed that support manual annotation, automatically increase the amount of reliable information and help to detect inconsistencies in manually generated annotations. RESULTS: A standard data mining algorithm was successfully applied to gain knowledge about the Keyword annotation in SWISS-PROT. 11 306 rules were generated, which are provided in a database and can be applied to yet unannotated protein sequences and viewed using a web browser. They rely on the taxonomy of the organism, in which the protein was found and on signature matches of its sequence. The statistical evaluation of the generated rules by cross-validation suggests that by applying them on arbitrary proteins 33% of their keyword annotation can be generated with an error rate of 1.5%. The coverage rate of the keyword annotation can be increased to 60% by tolerating a higher error rate of 5%. AVAILABILITY: The results of the automatic data mining process can be browsed on http://golgi.ebi.ac.uk:8080/Spearmint/ Source code is available upon request. CONTACT: kretsch@ebi.ac.uk.  相似文献   

5.
The online encyclopedia Wikipedia has become one of the most important online references in the world and has a substantial and growing scientific content. A search of Google with many RNA-related keywords identifies a Wikipedia article as the top hit. We believe that the RNA community has an important and timely opportunity to maximize the content and quality of RNA information in Wikipedia. To this end, we have formed the RNA WikiProject (http://en.wikipedia.org/wiki/Wikipedia:WikiProject_RNA) as part of the larger Molecular and Cellular Biology WikiProject. We have created over 600 new Wikipedia articles describing families of noncoding RNAs based on the Rfam database, and invite the community to update, edit, and correct these articles. The Rfam database now redistributes this Wikipedia content as the primary textual annotation of its RNA families. Users can, therefore, for the first time, directly edit the content of one of the major RNA databases. We believe that this Wikipedia/Rfam link acts as a functioning model for incorporating community annotation into molecular biology databases.  相似文献   

6.
Public sequence databases contain information on the sequence, structure and function of proteins. Genome sequencing projects have led to a rapid increase in protein sequence information, but reliable, experimentally verified, information on protein function lags a long way behind. To address this deficit, functional annotation in protein databases is often inferred by sequence similarity to homologous, annotated proteins, with the attendant possibility of error. Now, the functional annotation in these homologous proteins may itself have been acquired through sequence similarity to yet other proteins, and it is generally not possible to determine how the functional annotation of any given protein has been acquired. Thus the possibility of chains of misannotation arises, a process we term 'error percolation'. With some simple assumptions, we develop a dynamical probabilistic model for these misannotation chains. By exploring the consequences of the model for annotation quality it is evident that this iterative approach leads to a systematic deterioration of database quality.  相似文献   

7.
8.
9.
The UniProt/Swiss-Prot Knowledgebase records about 30,500 variants in 5,664 proteins (Release 52.2). Most of these variants are manually curated single amino acid polymorphisms (SAPs) with references to the literature. In order to keep the list of published documents related to SAPs up to date, an automatic information retrieval method is developed to recover texts mentioning SAPs. The method is based on the use of regular expressions (patterns) and rules for the detection and validation of mutations. When evaluated using a corpus of 9,820 PubMed references, the precision of the retrieval was determined to be 89.5% over all variants. It was also found that the use of nonstandard mutation nomenclature and sequence positional correction is necessary to retrieve a significant number of relevant articles. The method was applied to the 5,664 proteins with variants. This was performed by first submitting a PubMed query to retrieve articles using gene or protein names and a list of mutation-related keywords; the SAP detection procedure was then used to recover relevant documents. The method was found to be efficient in retrieving new references on known polymorphisms. New references on known SAPs will be rendered accessible to the public via the Swiss-Prot variant pages.  相似文献   

10.
11.
With the rapid growth of sequence databases, there is an increasing need for reliable functional characterisation and annotation of newly predicted proteins. To cope with such large data volumes, faster and more effective means of protein sequence characterisation and annotation are required. One promising approach is automatic large-scale functional characterisation and annotation, which is generated with limited human interaction. However, such an approach is heavily dependent on reliable data sources. The SWISS-PROT protein sequence database plays an essential role here owing to its high level of functional information.  相似文献   

12.
Proteins of unknown function are a barrier to our understanding of molecular biology. Assigning function to these "uncharacterized" proteins is imperative, but challenging. The usual approach is similarity searches using annotation databases, which are useful for predicting function. However, since the performance of these databases on uncharacterized proteins is basically unknown, the accuracy of their predictions is suspect, making annotation difficult. To address this challenge, we developed a benchmark annotation dataset of 30 proteins in Shewanella oneidensis. The proteins in the dataset were originally uncharacterized after the initial annotation of the S. oneidensis proteome in 2002. In the intervening 5 years, the accumulation of new experimental evidence has enabled specific functions to be predicted. We utilized this benchmark dataset to evaluate several commonly utilized annotation databases. According to our criteria, six annotation databases accurately predicted functions for at least 60% of proteins in our dataset. Two of these six even had a "conditional accuracy" of 90%. Conditional accuracy is another evaluation metric we developed which excludes results from databases where no function was predicted. Also, 27 of the 30 proteins' functions were correctly predicted by at least one database. These represent one of the first performance evaluations of annotation databases on uncharacterized proteins. Our evaluation indicates that these databases readily incorporate new information and are accurate in predicting functions for uncharacterized proteins, provided that experimental function evidence exists.  相似文献   

13.
A semantic analysis of the annotations of the human genome   总被引:2,自引:0,他引:2  
The correct interpretation of any biological experiment depends in an essential way on the accuracy and consistency of the existing annotation databases. Such databases are ubiquitous and used by all life scientists in most experiments. However, it is well known that such databases are incomplete and many annotations may also be incorrect. In this paper we describe a technique that can be used to analyze the semantic content of such annotation databases. Our approach is able to extract implicit semantic relationships between genes and functions. This ability allows us to discover novel functions for known genes. This approach is able to identify missing and inaccurate annotations in existing annotation databases, and thus help improve their accuracy. We used our technique to analyze the current annotations of the human genome. From this body of annotations, we were able to predict 212 additional gene-function assignments. A subsequent literature search found that 138 of these gene-functions assignments are supported by existing peer-reviewed papers. An additional 23 assignments have been confirmed in the meantime by the addition of the respective annotations in later releases of the Gene Ontology database. Overall, the 161 confirmed assignments represent 75.95% of the proposed gene-function assignments. Only one of our predictions (0.4%) was contradicted by the existing literature. We could not find any relevant articles for 50 of our predictions (23.58%). The method is independent of the organism and can be used to analyze and improve the quality of the data of any public or private annotation database.  相似文献   

14.
Functional annotation of proteins encoded in newly sequenced genomes can be expected to meet two conflicting objectives: (i) provide as much information as possible, and (ii) avoid erroneous functional assignments and over-predictions. The continuing exponential growth of the number of sequenced genomes makes the quality of sequence annotation a critical factor in the efforts to utilize this new information. When dubious functional assignments are used as a basis for subsequent predictions, they tend to proliferate, leading to "database explosion". It is therefore important to identify the common factors that hamper functional annotation. As a first step towards that goal, we have compared the annotations of the Mycoplasma genitalium and Methanococcus jannaschii genomes produced in several independent studies. The most common causes of questionable predictions appear to be: i) non-critical use of annotations from existing database entries; ii) taking into account only the annotation of the best database hit; iii) insufficient masking of low complexity regions (e.g. non-globular domains) in protein sequences, resulting in spurious database hits obscuring relevant ones; iv) ignoring multi-domain organization of the query proteins and/or the database hits; v) non-critical functional inferences on the basis of the functions of neighboring genes in an operon; vi) non-orthologous gene displacement, i.e. involvement of structurally unrelated proteins in the same function. These observations suggest that case by case validation of functional annotation by expert biologists remains crucial for productive genome analysis.  相似文献   

15.
Several institutions provide genomic annotation data, and therefore these data show a significant segmentation and redundancy. Public databases allow access, through their own methods, to genomic and proteomic sequences and related annotation. Although some cross-reference tables are available, they don't cover the complete datasets provided by these databases. The Genomic Annotation Gathering project intends to unify annotation data provided by GenBank and Ensembl. We introduce an intra-species, cross-bank method. Generated results provide an enriched set of cross- references. This method allows for identifying an average of 30% of new cross-references that can be integrated to other utilities dedicated to analyzing related annotation data. By using only sequence comparison, we are able to unify two datasets that previously didn't share any stable cross-bank accession method. The whole process is hosted by the GenOuest platform to provide public access to newly generated cross-references and to allow for regular updates (http://gag.genouest.org).  相似文献   

16.
Recent advances in high-throughput methods and the application of computational tools for automatic classification of proteins have made it possible to carry out large-scale proteomic analyses. Biological analysis and interpretation of sets of proteins is a time-consuming undertaking carried out manually by experts. We have developed PANDORA (Protein ANnotation Diagram ORiented Analysis), a web-based tool that provides an automatic representation of the biological knowledge associated with any set of proteins. PANDORA uses a unique approach of keyword-based graphical analysis that focuses on detecting subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA currently supports SwissProt keywords, NCBI Taxonomy, InterPro entries and the hierarchical classification terms from ENZYME, SCOP and GO databases. The integrated study of several annotation sources simultaneously allows a representation of biological relations of structure, function, cellular location, taxonomy, domains and motifs. PANDORA is also integrated into the ProtoNet system, thus allowing testing thousands of automatically generated clusters. We illustrate how PANDORA enhances the biological understanding of large, non-uniform sets of proteins originating from experimental and computational sources, without the need for prior biological knowledge on individual proteins.  相似文献   

17.
Since the advent of investigations into structural genomics, research has focused on correctly identifying domain boundaries, as well as domain similarities and differences in the context of their evolutionary relationships. As the science of structural genomics ramps up adding more and more information into the databanks, questions about the accuracy and completeness of our classification and annotation systems appear on the forefront of this research. A central question of paramount importance is how structural similarity relates to functional similarity. Here, we begin to rigorously and quantitatively answer these questions by first exploring the consensus between the most common protein domain structure annotation databases CATH, SCOP and FSSP. Each of these databases explores the evolutionary relationships between protein domains using a combination of automatic and manual, structural and functional, continuous and discrete similarity measures. In order to examine the issue of consensus thoroughly, we build a generalized graph out of each of these databases and hierarchically cluster these graphs at interval thresholds. We then employ a distance measure to find regions of greatest overlap. Using this procedure we were able not only to enumerate the level of consensus between the different annotation systems, but also to define the graph-theoretical origins behind the annotation schema of class, family and superfamily by observing that the same thresholds that define the best consensus regions between FSSP, SCOP and CATH correspond to distinct, non-random phase-transitions in the structure comparison graph itself. To investigate the correspondence in divergence between structure and function further, we introduce a measure of functional entropy that calculates divergence in function space. First, we use this measure to calculate the general correlation between structural homology and functional proximity. We extend this analysis further by quantitatively calculating the average amount of functional information gained from our understanding of structural distance and the corollary inherent uncertainty that represents the theoretical limit of our ability to infer function from structural similarity. Finally we show how our measure of functional "entropy" translates into a more intuitive concept of functional annotation into similarity EC classes.  相似文献   

18.

Background  

Cellular processes require the interaction of many proteins across several cellular compartments. Determining the collective network of such interactions is an important aspect of understanding the role and regulation of individual proteins. The Gene Ontology (GO) is used by model organism databases and other bioinformatics resources to provide functional annotation of proteins. The annotation process provides a mechanism to document the binding of one protein with another. We have constructed protein interaction networks for mouse proteins utilizing the information encoded in the GO annotations. The work reported here presents a methodology for integrating and visualizing information on protein-protein interactions.  相似文献   

19.

Background  

Computational protein annotation methods occasionally introduce errors. False-positive (FP) errors are annotations that are mistakenly associated with a protein. Such false annotations introduce errors that may spread into databases through similarity with other proteins. Generally, methods used to minimize the chance for FPs result in decreased sensitivity or low throughput. We present a novel protein-clustering method that enables automatic separation of FP from true hits. The method quantifies the biological similarity between pairs of proteins by examining each protein's annotations, and then proceeds by clustering sets of proteins that received similar annotation into biological groups.  相似文献   

20.
One of the main goals in proteomics is to solve biological and molecular questions regarding a set of identified proteins. In order to achieve this goal, one has to extract and collect the existing biological data from public repositories for every protein and afterward, analyze and organize the collected data. Due to the complexity of this task and the huge amount of data available, it is not possible to gather this information by hand, making it necessary to find automatic methods of data collection. Within a proteomic context, we have developed Protein Information and Knowledge Extractor (PIKE) which solves this problem by automatically accessing several public information systems and databases across the Internet. PIKE bioinformatics tool starts with a set of identified proteins, listed as the most common protein databases accession codes, and retrieves all relevant and updated information from the most relevant databases. Once the search is complete, PIKE summarizes the information for every single protein using several file formats that share and exchange the information with other software tools. It is our opinion that PIKE represents a great step forward for information procurement and drastically reduces manual database validation for large proteomic studies. It is available at http://proteo.cnb.csic.es/pike .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号