首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The information theoretic concept of mutual information provides a general framework to evaluate dependencies between variables. In the context of the clustering of genes with similar patterns of expression it has been suggested as a general quantity of similarity to extend commonly used linear measures. Since mutual information is defined in terms of discrete variables, its application to continuous data requires the use of binning procedures, which can lead to significant numerical errors for datasets of small or moderate size.

Results

In this work, we propose a method for the numerical estimation of mutual information from continuous data. We investigate the characteristic properties arising from the application of our algorithm and show that our approach outperforms commonly used algorithms: The significance, as a measure of the power of distinction from random correlation, is significantly increased. This concept is subsequently illustrated on two large-scale gene expression datasets and the results are compared to those obtained using other similarity measures.A C++ source code of our algorithm is available for non-commercial use from kloska@scienion.de upon request.

Conclusion

The utilisation of mutual information as similarity measure enables the detection of non-linear correlations in gene expression datasets. Frequently applied linear correlation measures, which are often used on an ad-hoc basis without further justification, are thereby extended.
  相似文献   

2.
Recently, the concept of mutual information has been proposed for inferring the structure of genetic regulatory networks from gene expression profiling. After analyzing the limitations of mutual information in inferring the gene-to-gene interactions, this paper introduces the concept of conditional mutual information and based on it proposes two novel algorithms to infer the connectivity structure of genetic regulatory networks. One of the proposed algorithms exhibits a better accuracy while the other algorithm excels in simplicity and flexibility. By exploiting the mutual information and conditional mutual information, a practical metric is also proposed to assess the likeliness of direct connectivity between genes. This novel metric resolves a common limitation associated with the current inference algorithms, namely the situations where the gene connectivity is established in terms of the dichotomy of being either connected or disconnected. Based on the data sets generated by synthetic networks, the performance of the proposed algorithms is compared favorably relative to existing state-of-the-art schemes. The proposed algorithms are also applied on realistic biological measurements, such as the cutaneous melanoma data set, and biological meaningful results are inferred.  相似文献   

3.
4.
Independent component analysis (ICA) and blind source separation (BSS) methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI) in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR) effected by each decomposition, and decomposition 'dipolarity' defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA); best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison).  相似文献   

5.
In the era of structural genomics, the prediction of protein interactions using docking algorithms is an important goal. The success of this method critically relies on the identification of good docking solutions among a vast excess of false solutions. We have adapted the concept of mutual information (MI) from information theory to achieve a fast and quantitative screening of different structural features with respect to their ability to discriminate between physiological and nonphysiological protein interfaces. The strategy includes the discretization of each structural feature into distinct value ranges to optimize its mutual information. We have selected 11 structural features and two datasets to demonstrate that the MI is dimensionless and can be directly compared for diverse structural features and between datasets of different sizes. Conversion of the MI values into a simple scoring function revealed that those features with a higher MI are actually more powerful for the identification of good docking solutions. Thus, an MI-based approach allows the rapid screening of structural features with respect to their information content and should therefore be helpful for the design of improved scoring functions in future. In addition, the concept presented here may also be adapted to related areas that require feature selection for biomolecules or organic ligands.  相似文献   

6.
With the growing availability of large-scale biological datasets, automated methods of extracting functionally meaningful information from this data are becoming increasingly important. Data relating to functional association between genes or proteins, such as co-expression or functional association, is often represented in terms of gene or protein networks. Several methods of predicting gene function from these networks have been proposed. However, evaluating the relative performance of these algorithms may not be trivial: concerns have been raised over biases in different benchmarking methods and datasets, particularly relating to non-independence of functional association data and test data. In this paper we propose a new network-based gene function prediction algorithm using a commute-time kernel and partial least squares regression (Compass). We compare Compass to GeneMANIA, a leading network-based prediction algorithm, using a number of different benchmarks, and find that Compass outperforms GeneMANIA on these benchmarks. We also explicitly explore problems associated with the non-independence of functional association data and test data. We find that a benchmark based on the Gene Ontology database, which, directly or indirectly, incorporates information from other databases, may considerably overestimate the performance of algorithms exploiting functional association data for prediction.  相似文献   

7.
MOTIVATION: The total order of the genes or markers on a chromosome inherent in its representation as a signed per-mutation must often be weakened to a partial order in the case of real data. This is due to lack of resolution (where several genes are mapped to the same chromosomal position) to missing data from some of the datasets used to compile a gene order, and to conflicts between these datasets. The available genome rearrangement algorithms, however, require total orders as input. A more general approach is needed to handle rearrangements of gene partial orders. RESULTS: We formalize the uncertainty in gene order data by representing a chromosome from each genome as a partial order, summarized by a directed acyclic graph (DAG). The rearrangement problem is then to infer a minimal sequence of reversals for transforming any topological sort of one DAG to any one of the other DAG. Each topological sort represents a possible linearization compatible with all the datasets on the chromosome. The set of all possible topological sorts is embedded in each DAG by appropriately augmenting the edge set, so that it becomes a general directed graph (DG). The DGs representing chromosomes of two genomes are combined to produce a bicoloured graph from which we extract a maximal decomposition into alternating coloured cycles, and from which, in turn, an optimal sequence of reversals can usually be identified. We test this approach on simulated incomplete comparative maps and on cereal chromosomal maps drawn from the Gramene browser.  相似文献   

8.
MOTIVATION: The analysis of biological samples with high-throughput mass spectrometers has increased greatly in recent years. As larger datasets are processed, it is important that the spectra are aligned to ensure that the same protein intensities are correctly identified in each sample. Without such an alignment procedure it is possible to make errors in identifying the signals from peptides with similar molecular weight. Two algorithms are provided that can improve the alignment among samples. One algorithm is designed to work with SELDI data produced from a Ciphergen instrument, and the other can be used with data in a more general format. RESULTS: The two algorithms were applied to samples drawn from a common pool of reference serum. The results indicate substantial improvement in consistently identifying peptide signals in different samples.  相似文献   

9.
The use of mutual information as a similarity measure in agglomerative hierarchical clustering (AHC) raises an important issue: some correction needs to be applied for the dimensionality of variables. In this work, we formulate the decision of merging dependent multivariate normal variables in an AHC procedure as a Bayesian model comparison. We found that the Bayesian formulation naturally shrinks the empirical covariance matrix towards a matrix set a priori (e.g., the identity), provides an automated stopping rule, and corrects for dimensionality using a term that scales up the measure as a function of the dimensionality of the variables. Also, the resulting log Bayes factor is asymptotically proportional to the plug-in estimate of mutual information, with an additive correction for dimensionality in agreement with the Bayesian information criterion. We investigated the behavior of these Bayesian alternatives (in exact and asymptotic forms) to mutual information on simulated and real data. An encouraging result was first derived on simulations: the hierarchical clustering based on the log Bayes factor outperformed off-the-shelf clustering techniques as well as raw and normalized mutual information in terms of classification accuracy. On a toy example, we found that the Bayesian approaches led to results that were similar to those of mutual information clustering techniques, with the advantage of an automated thresholding. On real functional magnetic resonance imaging (fMRI) datasets measuring brain activity, it identified clusters consistent with the established outcome of standard procedures. On this application, normalized mutual information had a highly atypical behavior, in the sense that it systematically favored very large clusters. These initial experiments suggest that the proposed Bayesian alternatives to mutual information are a useful new tool for hierarchical clustering.  相似文献   

10.
MPP is a Java application, encompassing both new and established algorithms, for the analysis of gene and marker content datasets arising from high-throughput microarray techniques. MPP analyses flat file output from microarray experiments to determine the probability of the presence or absence of genes or markers within a genome. MPP can construct gene or marker content datasets for a number of genomes and can use the data to estimate an evolutionary tree or network. Results from gene content analyses may be validated by comparing them to known gene contents. MPP was initially developed to analyse data derived from comparative genome hybridization (CGH) microarray experiments in fungi and bacteria. It has recently been adapted to analyse retrotransposon-based insertion polymorphism (RBIP) marker scores derived from tagged microarray marker (TAM) experiments in pea. New analytical procedures may be added easily to MPP as plugins in order to increase the scope of the software. AVAILABILITY: MPP source code, executables and online help are available at http://cbr.jic.ac.uk/dicks/software/  相似文献   

11.
12.
BackgroundSimilarity based computational methods are a useful tool for predicting protein functions from protein–protein interaction (PPI) datasets. Although various similarity-based prediction algorithms have been proposed, unsatisfactory prediction results have occurred on many occasions. The purpose of this type of algorithm is to predict functions of an unannotated protein from the functions of those proteins that are similar to the unannotated protein. Therefore, the prediction quality largely depends on how to select a set of proper proteins (i.e., a prediction domain) from which the functions of an unannotated protein are predicted, and how to measure the similarity between proteins. Another issue with existing algorithms is they only believe the function prediction is a one-off procedure, ignoring the fact that interactions amongst proteins are mutual and dynamic in terms of similarity when predicting functions. How to resolve these major issues to increase prediction quality remains a challenge in computational biology.ResultsIn this paper, we propose an innovative approach to predict protein functions of unannotated proteins iteratively from a PPI dataset. The iterative approach takes into account the mutual and dynamic features of protein interactions when predicting functions, and addresses the issues of protein similarity measurement and prediction domain selection by introducing into the prediction algorithm a new semantic protein similarity and a method of selecting the multi-layer prediction domain. The new protein similarity is based on the multi-layered information carried by protein functions. The evaluations conducted on real protein interaction datasets demonstrated that the proposed iterative function prediction method outperformed other similar or non-iterative methods, and provided better prediction results.ConclusionsThe new protein similarity derived from multi-layered information of protein functions more reasonably reflects the intrinsic relationships among proteins, and significant improvement to the prediction quality can occur through incorporation of mutual and dynamic features of protein interactions into the prediction algorithm.  相似文献   

13.
Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named “splitting merging awareness tactics” (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms.  相似文献   

14.
Proteins that contain similar structural elements often have analogous functions regardless of the degree of sequence similarity or structure connectivity in space. In general, protein structure comparison (PSC) provides a straightforward methodology for biologists to determine critical aspects of structure and function. Here, we developed a novel PSC technique based on angle-distance image (A-D image) transformation and matching, which is independent of sequence similarity and connectivity of secondary structure elements (SSEs). An A-D image is constructed by utilizing protein secondary structure information. According to various types of SSEs, the mutual SSE pairs of the query protein are classified into three different types of sub-images. Subsequently, corresponding sub-images between query and target protein structures are compared using modified cross-correlation approaches to identify the similarity of various patterns. Structural relationships among proteins are displayed by hierarchical clustering trees, which facilitate the establishment of the evolutionary relationships between structure and function of various proteins.Four standard testing datasets and one newly created dataset were used to evaluate the proposed method. The results demonstrate that proteins from these five datasets can be categorized in conformity with their spatial distribution of SSEs. Moreover, for proteins with low sequence identity that share high structure similarity, the proposed algorithms are an efficient and effective method for structural comparison.  相似文献   

15.
Microarray data analysis has been shown to provide an effective tool for studying cancer and genetic diseases. Although classical machine learning techniques have successfully been applied to find informative genes and to predict class labels for new samples, common restrictions of microarray analysis such as small sample sizes, a large attribute space and high noise levels still limit its scientific and clinical applications. Increasing the interpretability of prediction models while retaining a high accuracy would help to exploit the information content in microarray data more effectively. For this purpose, we evaluate our rule-based evolutionary machine learning systems, BioHEL and GAssist, on three public microarray cancer datasets, obtaining simple rule-based models for sample classification. A comparison with other benchmark microarray sample classifiers based on three diverse feature selection algorithms suggests that these evolutionary learning techniques can compete with state-of-the-art methods like support vector machines. The obtained models reach accuracies above 90% in two-level external cross-validation, with the added value of facilitating interpretation by using only combinations of simple if-then-else rules. As a further benefit, a literature mining analysis reveals that prioritizations of informative genes extracted from BioHEL's classification rule sets can outperform gene rankings obtained from a conventional ensemble feature selection in terms of the pointwise mutual information between relevant disease terms and the standardized names of top-ranked genes.  相似文献   

16.
Harmonic analysis on manifolds and graphs has recently led to mathematical developments in the field of data analysis. The resulting new tools can be used to compress and analyze large and complex data sets, such as those derived from sensor networks or neuronal activity datasets, obtained in the laboratory or through computer modeling. The nature of the algorithms (based on diffusion maps and connectivity strengths on graphs) possesses a certain analogy with neural information processing, and has the potential to provide inspiration for modeling and understanding biological organization in perception and memory formation.  相似文献   

17.
18.
MOTIVATION: An important challenge in the use of large-scale gene expression data for biological classification occurs when the expression dataset being analyzed involves multiple classes. Key issues that need to be addressed under such circumstances are the efficient selection of good predictive gene groups from datasets that are inherently 'noisy', and the development of new methodologies that can enhance the successful classification of these complex datasets. METHODS: We have applied genetic algorithms (GAs) to the problem of multi-class prediction. A GA-based gene selection scheme is described that automatically determines the members of a predictive gene group, as well as the optimal group size, that maximizes classification success using a maximum likelihood (MLHD) classification method. RESULTS: The GA/MLHD-based approach achieves higher classification accuracies than other published predictive methods on the same multi-class test dataset. It also permits substantial feature reduction in classifier genesets without compromising predictive accuracy. We propose that GA-based algorithms may represent a powerful new tool in the analysis and exploration of complex multi-class gene expression data. AVAILABILITY: Supplementary information, data sets and source codes are available at http://www.omniarray.com/bioinformatics/GA.  相似文献   

19.
MOTIVATION: In this paper, we propose using the Kalman filter (KF) as a pre-processing step in microarray-based molecular diagnosis. Incorporating the expression covariance between genes is important in such classification problems, since this represents the functional relationships that govern tissue state. Failing to fulfil such requirements may result in biologically implausible class prediction models. Here, we show that employing the KF to remove noise (while retaining meaningful covariance and thus being able to estimate the underlying biological state from microarray measurements) yields linearly separable data suitable for most classification algorithms. RESULTS: We demonstrate the utility and performance of the KF as a robust disease-state estimator on publicly available binary and multi-class microarray datasets in combination with the most widely used classification methods to date. Moreover, using popular graphical representation schemes we show that our filtered datasets also have an improved visualization capability.  相似文献   

20.
The large variety of clustering algorithms and their variants can be daunting to researchers wishing to explore patterns within their microarray datasets. Furthermore, each clustering method has distinct biases in finding patterns within the data, and clusterings may not be reproducible across different algorithms. A consensus approach utilizing multiple algorithms can show where the various methods agree and expose robust patterns within the data. In this paper, we present a software package - Consense, written for R/Bioconductor - that utilizes such an approach to explore microarray datasets. Consense produces clustering results for each of the clustering methods and produces a report of metrics comparing the individual clusterings. A feature of Consense is identification of genes that cluster consistently with an index gene across methods. Utilizing simulated microarray data, sensitivity of the metrics to the biases of the different clustering algorithms is explored. The framework is easily extensible, allowing this tool to be used by other functional genomic data types, as well as other high-throughput OMICS data types generated from metabolomic and proteomic experiments. It also provides a flexible environment to benchmark new clustering algorithms. Consense is currently available as an installable R/Bioconductor package (http://www.ohsucancer.com/isrdev/consense/).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号