首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondrial membrane potential (DeltaPsi(m)) depolarization contributes to cell death and electrical and contractile dysfunction in the post-ischemic heart. An imbalance between mitochondrial reactive oxygen species production and scavenging was previously implicated in the activation of an inner membrane anion channel (IMAC), distinct from the permeability transition pore (PTP), as the first response to metabolic stress in cardiomyocytes. The glutathione redox couple, GSH/GSSG, oscillated in parallel with DeltaPsi(m) and the NADH/NAD(+) redox state. Here we show that depletion of reduced glutathione is an alternative trigger of synchronized mitochondrial oscillation in cardiomyocytes and that intermediate GSH/GSSG ratios cause reversible DeltaPsi(m) depolarization, although irreversible PTP activation is induced by extensive thiol oxidation. Mitochondrial dysfunction in response to diamide occurred in stages, progressing from oscillations in DeltaPsi(m) to sustained depolarization, in association with depletion of GSH. Mitochondrial oscillations were abrogated by 4'-chlorodiazepam, an IMAC inhibitor, whereas cyclosporin A was ineffective. In saponin-permeabilized cardiomyocytes, the thiol redox status was systematically clamped at GSH/GSSG ratios ranging from 300:1 to 20:1. At ratios of 150:1-100:1, DeltaPsi(m) depolarized reversibly, and a matrix-localized fluorescent marker was retained; however, decreasing the GSH/GSSG to 50:1 irreversibly depolarized DeltaPsi(m) and induced maximal rates of reactive oxygen species production, NAD(P)H oxidation, and loss of matrix constituents. Mitochondrial GSH sensitivity was altered by inhibiting either GSH uptake, the NADPH-dependent glutathione reductase, or the NADH/NADPH transhydrogenase, indicating that matrix GSH regeneration or replenishment was crucial. The results indicate that GSH/GSSG redox status governs the sequential opening of mitochondrial ion channels (IMAC before PTP) triggered by thiol oxidation in cardiomyocytes.  相似文献   

2.
3.
Bone marrow cells (BMCs) are the main type of cells used for transplantation therapies. Obesity, a major world health problem, has been demonstrated to affect various tissues, including bone marrow. This could compromise the success of such therapies. One of the main mechanisms underlying the pathogenesis of obesity is mitochondrial dysfunction, and recent data have suggested an important role for mitochondrial metabolism in the regulation of stem cell proliferation and differentiation. Since the potential use of BMCs for clinical therapies depends on their viability and capacity to proliferate and/or differentiate properly, the analysis of mitochondrial function and cell viability could be important approaches for evaluating BMC quality in the context of obesity. We therefore compared BMCs from a control group (CG) and an obese group (OG) of mice and evaluated their mitochondrial function, proliferation capacity, apoptosis, and levels of proteins involved in energy metabolism. BMCs from OG had increased apoptosis and decreased proliferation rates compared with CG. Mitochondrial respiratory capacity, biogenesis, and the coupling between oxidative phosphorylation and ATP synthesis were significantly decreased in OG compared with CG, in correlation with increased levels of uncoupling protein 2 and reduced peroxisome proliferator-activated receptor-coactivator 1α content. OG also had decreased amounts of the glucose transporter GLUT-1 and insulin receptor (IRβ). Thus, Western-diet-induced obesity leads to mitochondrial dysfunction and reduced proliferative capacity in BMCs, changes that, in turn, might compromise the success of therapies utilizing these cells.  相似文献   

4.
5.
The maturation of dendritic cells (DCs) is associated with a diminished ability to support human immunodeficiency virus (HIV) replication; however, the precise step in the HIV life cycle impaired by DC maturation remains uncertain. Using an HIV virion-based fusion assay, we now show that HIV fusion to monocyte-derived DCs (MDDCs) both decreases and kinetically slows when DCs are induced to mature with poly(I:C) and tumor necrosis factor alpha. Specifically, laboratory-adapted CCR5-tropic 81A virions fused with markedly lower efficiency to mature MDDCs than immature DCs. In contrast, fusion of NL4-3, the isogenic CXCR4-tropic counterpart of 81A, was low in both immature and mature MDDCs. Fusion mediated by primary HIV envelopes, including seven CCR5- and four CXCR4-tropic envelopes, also decreased with DC maturation. The kinetics of virion fusion were also altered by both the state of DC maturation and the coreceptor utilized. Fusion of 81A and NL4-3 virions was delayed in mature compared to immature MDDCs, and NL4-3 fused more slowly than 81A in both mature and immature MDDCs. Surprisingly, primary envelopes with CXCR4 tropism mediated fusion to immature MDDCs with efficiencies similar to those of primary CCR5-tropic envelopes. This result contrasted with the marked preferential fusion of the laboratory-adapted 81A over NL4-3 in immature MDDCs and in ex vivo Langerhans cells, indicating that these laboratory-adapted HIV strains do not fully recapitulate all of the properties of primary HIV isolates. In conclusion, our results demonstrate that the defect in HIV replication observed in mature MDDCs stems at least in part from a decline in viral fusion.  相似文献   

6.
Parental Chinese hamster ovary (CHO) cells were mutagenized and subjected first to a mannose suicide selection technique and second to a screen of individual colonies grown on polyester discs for reduced mannose incorporation into protein. The incorporation of radioactivity for the selection and the screen was conducted at 41.5 degrees C instead of the normal growth temperature of 34 degrees C in order to allow for the isolation of temperature-sensitive lesions. This selection/screening procedure resulted in the isolation of M15-4 cells, which had three- to five-fold lower incorporation of [2-3H]mannose into mannose 6-phosphate, mannose 1-phosphate, GDP-mannose, oligosaccharide-lipid, and glycoprotein at 41.5 degrees C. We detected no difference in the qualitative pattern of mannose-labeled lipid-linked oligosaccharides compared to parental cells. M15-4 cells synthesized dolichol. The defect of M15-4 cells was determined to be in hexokinase activity; crude cytosolic extracts were eight- to nine-fold lower in hexokinase activity in M15-4 cells compared to parental cells. As a result of this defect, incorporation of labeled mannose from the medium was significantly decreased. However, the level of GDP-mannose in M15-4 cells was 70% of normal. The phenotype of M15-4 was a lower specific activity of labeled GDP-mannose, not a substantial reduction in the level of GDP-mannose. Consistent with these results, no alterations in the glycosylation of a model glycoprotein, G protein of vesicular stomatitis virus, were observed. These cells grew slower than parental cells, especially in low-glucose medium.  相似文献   

7.
2-Phenyl-beta-lapachone (3,4-dihydro-2-methyl-2-phenyl-2H-naphtho[1,2b]pyran-5,6-dione) (2PBL) is a o-naphthoquinone synthesized as a possible antitumoral agent. The addition of micromolar concentrations of 2PBL to rat liver mitochondria (in the presence of malate-glutamate or succinate, as respiratory substrates): (1) stimulated O(2) consumption in state 4 and inhibited O(2) consumption in state 3, thus decreasing respiratory control index (RCI); and (2) collapsed the mitochondrial membrane potential. The addition of 2PBL to rat liver submitochondrial particles: (1) stimulated NADH oxidation in the presence of rotenone, antimycin, myxothiazol or cyanide; (2) stimulated (.-)O(2)(-) production in the presence of NADH and antimycin; and (3) led to 2PBL semiquinone radical production. Control studies carried out with two p-naphthoquinones, menadione and atovaquone, did not produced equivalent effects. These findings support the hypothesis that 2PBL, undergoes redox cycling and affects mitochondrial function. The 2PBL effect is complex, involving inhibition of electron transfer, uncoupling of oxidative phosphorylation, collapse of mitochondrial membrane potential and (.-)O(2)(-) production by redox cycling. The mitochondrion could be a target organelle for 2PBL cytotoxicity.  相似文献   

8.
1. The conditions under which mitochondria might catalyse a net reversal of oxidative phosphorylation are analysed.

2. Rat-liver mitochondria, incubated under such conditions, show a strongly diminished affinity for oxygen.

3. The velocity of respiration under these conditions is a hyperbolic function of the oxygen concentration.

4. The Km for oxygen is less than 0.1 μM at low phosphate potential, irrespective of substrate, and 1–3 μM under reversal conditions.

5. The observed kinetics can be accounted for in a simple mechanism for cytochrome oxidase action.  相似文献   


9.
BackgroundThe numbers of circulating regulatory T cells (Tregs) are increased in lepromatous leprosy (LL) but reduced in erythema nodosum leprosum (ENL), the inflammatory complication of LL. It is unclear whether the suppressive function of Tregs is intact in both these conditions.MethodsA longitudinal study recruited participants at ALERT Hospital, Ethiopia. Peripheral blood samples were obtained before and after 24 weeks of prednisolone treatment for ENL and multidrug therapy (MDT) for participants with LL. We evaluated the suppressive function of Tregs in the peripheral blood mononuclear cells (PBMCs) of participants with LL and ENL by analysis of TNFα, IFNγ and IL-10 responses to Mycobacterium leprae (M. leprae) stimulation before and after depletion of CD25+ cells.Results30 LL participants with ENL and 30 LL participants without ENL were recruited. The depletion of CD25+ cells from PBMCs was associated with enhanced TNFα and IFNγ responses to M. leprae stimulation before and after 24 weeks treatment of LL with MDT and of ENL with prednisolone. The addition of autologous CD25+ cells to CD25+ depleted PBMCs abolished these responses. In both non-reactional LL and ENL groups mitogen (PHA)-induced TNFα and IFNγ responses were not affected by depletion of CD25+ cells either before or after treatment. Depleting CD25+ cells did not affect the IL-10 response to M. leprae before and after 24 weeks of MDT in participants with LL. However, depletion of CD25+ cells was associated with an enhanced IL-10 response on stimulation with M. leprae in untreated participants with ENL and reduced IL-10 responses in treated individuals with ENL. The enhanced IL-10 in untreated ENL and the reduced IL-10 response in prednisolone treated individuals with ENL was abolished by addition of autologous CD25+ cells.ConclusionThe findings support the hypothesis that the impaired cell-mediated immune response in individuals with LL is M. leprae antigen specific and the unresponsiveness can be reversed by depleting CD25+ cells. Our results suggest that the suppressive function of Tregs in ENL is intact despite ENL being associated with reduced numbers of Tregs. The lack of difference in IL-10 response in control PBMCs and CD25+ depleted PBMCs in individuals with LL and the increased IL-10 response following the depletion of CD25+ cells in individuals with untreated ENL suggest that the mechanism of immune regulation by Tregs in leprosy appears independent of IL-10 or that other cells may be responsible for IL-10 production in leprosy. The present findings highlight mechanisms of T cell regulation in LL and ENL and provide insights into the control of peripheral immune tolerance, identifying Tregs as a potential therapeutic target.  相似文献   

10.
Neuronal redox phenomena are involved in numerous biochemical pathways and play a key role in many pathological events and clinical situations. The oxidation/reduction (redox) state present in biological compartments is a major target for possible pharmaceutical intervention and, consequently, the processes associated with its change have attracted increased attention in recent years. Here, we analyze the redox environment and its spatial compartmentalization in differentiated neuronal phenotype of PC-12 cells using a redox-sensitive protein (i.e., a mutant of the Yellow Fluorescent protein), employed ratiometrically. Redox maps of cells were generated with an elevate spatial resolution, and the spatial distributions of highly oxidized and highly reduced regions have been determined. A quantitative analysis of redox maps allows the disclosure of a peculiar spatial organization of the redox environment.  相似文献   

11.
Gap junctions have been implicated in growth control, but it remains unclear whether cells that enter a quiescent state continue to express connexins and maintain a high level of gap junction intercellular communication (GJIC). To this end, MAC-T cells, a bovine mammary epithelial cell line, were serum starved for 48 h to induce a quiescent (G0) state. In quiescent cells, [3H]thymidine incorporation was reduced by 97.3% from serum-fed controls. Western blotting in conjunction with Phosphorlmager analysis revealed up to a 20-fold decrease in the expression of the gap junction protein connexin43 (Cx43 or alpha 1) and a shift toward the unphosphorylated form in quiescent cells. However, cell-to-cell transfer of the gap junction-permeable fluorescent tracer, Lucifer yellow, was only moderately reduced in quiescent cells. In control cells, Cx43 was predominantly perinuclear, although it was also present at sites of cell-cell apposition. In quiescent cells, intracellular labeling for Cx43 decreased without a corresponding reduction at areas of cell-cell contact. Recovery from serum deprivation resulted in increased thymidine incorporation that corresponded with an elevation in Cx43 protein expression and phosphorylation. In parallel studies, MAC-T cells were also induced to enter a quiescent state through contact inhibition. Despite a 20-fold reduction in 5-bromo-2'-deoxyuridine and a substantial reduction in intracellular Cx43, contact inhibited MAC-T cells also maintained gap junctions and GJIC. These experiments demonstrate that the maintenance of dye coupling in quiescent mammary cells is correlated with a redistribution of intracellular stores of Cx43.  相似文献   

12.
13.
To establish liver tissue engineering, the effective substratum for hepatocytes culture should be developed. Up to now, it is believed that Matrigel, which contains several basement membrane proteins produced by sarcoma cells, is the most effective substratum. Matrigel does not contain extracellular matrix molecules derived from epithelial cells although the space of Disse contains the molecules such as laminin-511/521 (laminin-10/11). Therefore, the basement membrane formed by epithelial cells can be more effective substratum than Matrigel. In this study, we evaluated hepatocytes behavior on basement membrane (rBM) formed by alveolar epithelial cells. The viability of hepatocytes on rBM is higher than that of Matrigel within 5 days. Also, the expression of Cyp1a2 induced by beta-naphthoflavone can be observed in hepatocytes on rBM but not in Matrigel. These results indicate that rBM is a more effective substratum for hepatocyte culture than Matrigel.  相似文献   

14.
This work describes an electron transfer mediator-assisted amperometric flow injection method for assessing redox enzyme activity in different subcellular compartments of the phosphoglucose isomerase deletion mutant strain of Saccharomyces cerevisiae, EBY44. The method is demonstrated using the ferricyanide-menadione double mediator system to study the effect of dicoumarol, an inhibitor of cytosolic and mitochondrial oxidoreductases and an uncoupler of the electron transport chain. Evaluation of the role of NAD(P)H-producing pathways in mediating biological effects is facilitated by introducing either fructose or glucose as the carbon source, yielding either NADH or NADPH through the glycolytic or pentose phosphate pathway, respectively. Respiratory noncompetent cells show greater inhibition of cytosolic menadione-reducing enzymes when NADH rather than NADPH is produced. Spectrophotometric in vitro assays show no difference between the cofactors. Respiratory competent cells show cytosolic inhibition only when NADPH is produced, whereas production of NADH reveals uncoupling at low dicoumarol concentrations and inhibition of complexes III and IV at higher concentrations. Spectrophotometric assays only indicate the presence of cytosolic inhibition regardless of the reduced cofactor used. This article shows the applicability of the amperometric method and emphasizes the significance of determining biological effects of chemicals in living cells.  相似文献   

15.
16.
17.
18.
19.
The mitochondrial genome of Trypanosoma brucei, called kinetoplast DNA, is a network of topologically interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Kinetoplast DNA synthesis involves release of minicircles from the network, replication of the free minicircles and reattachment of the progeny. Here we report a new function of the mitochondrial topoisomerase II (TbTOP2mt). Although traditionally thought to reattach minicircle progeny to the network, here we show that it also mends holes in the network created by minicircle release. Network holes are not observed in wild‐type cells, implying that this mending reaction is normally efficient. However, RNAi of TbTOP2mt causes holes to persist and enlarge, leading to network fragmentation. Remarkably, these network fragments remain associated within the mitochondrion, and many appear to be appropriately packed at the local level, even as the overall kinetoplast organization is dramatically altered. The deficiency in mending holes is temporally the earliest observable defect in the complex TbTOP2mt RNAi phenotype.  相似文献   

20.
The activation and maintenance of Ag-specific CD8(+) T cells is central to the long-term control of persistent infections. These killer T cells act to continuously scan and remove reservoirs of pathogen that have eluded the acute immune response. Acutely cleared viral infections depend almost exclusively on dendritic cells (DC) to present Ags to, and to activate, the CD8(+) T cell response. Paradoxically, persistent pathogens often infect professional APCs such as DC, in addition to infecting a broad range of nonprofessional APC, raising the possibility that many cell types could present viral Ags and activate T cells. We addressed whether in persistent viral infection with murine gammaherpesviruses, DC or non-DC, such as B cells and macrophages, were required to maintain the continued activation of Ag-specific CD8(+) T cells. We found that presentation of the surrogate Ag, OVA, expressed under a lytic promoter to CD8(+) T cells during persistent infection was largely restricted to DC, with little contribution from other lymphoid resident cells, such as B cells. This is despite the fact that B cells harbor a very large reservoir of latent virus. Our results support that, during persistent viral infection, continual presentation of lytic Ags by DC leads to T cell activation critical for maintaining CD8(+) T cells capable of limiting persistent viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号