首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary hypertension is characterized by vascular remodeling involving smooth muscle cell proliferation and migration. Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) are potent vasodilators, and the inhibition of aortic smooth muscle cell (ASMC) proliferation by NO has been documented, but less is known about the effects of CGRP. The mechanism by which overexpression of CGRP inhibits proliferation in pulmonary artery smooth muscle cells (PASMC) and ASMC following in vitro transfection by the gene coding for prepro-CGRP was investigated. Increased expression of p53 is known to stimulate p21, which inhibits G(1) cyclin/cdk complexes, thereby inhibiting cell proliferation. We hypothesize that p53 and p21 are involved in the growth inhibitory effect of CGRP. In this study, CGRP was shown to inhibit ASMC and PASMC proliferation. In PASMC transfected with CGRP and exposed to a PKA inhibitor (PKAi), cell proliferation was restored. p53 and p21 expression increased in CGRP-treated cells but decreased in cells treated with CGRP and PKAi. PASMC treated with CGRP and a PKG inhibitor (PKGi) recovered from inhibition of proliferation induced by CGRP. ASMC treated with CGRP and then PKAi or PKGi recovered only when exposed to the PKAi and not PKGi. Although CGRP is thought to act through a cAMP-dependent pathway, cGMP involvement in the response to CGRP has been reported. It is concluded that p53 plays a role in CGRP-induced inhibition of cell proliferation and cAMP/PKA appears to mediate this effect in ASMC and PASMC, whereas cGMP appears to be involved in PASMC proliferation.  相似文献   

2.
Nitric oxide in the gut is produced by nNOS in enteric neurons and by eNOS in smooth muscle cells. The eNOS in smooth muscle is activated by vasoactive intestinal peptide (VIP) released from enteric neurons. In the present study, we examined the effect of nitric oxide on VIP-induced eNOS activation in smooth muscle cells isolated from human intestine and rabbit stomach. NOS activity was measured as formation of the 1:1 co-product, l-citrulline from l-arginine. VIP caused an increase in l-citrulline production that was inhibited by NO in a concentration dependent manner (IC(50)~25 microM; maximal inhibition 72% at 100 microM NO). Basal l-citrulline production, however, was unaffected by NO. The effect was not mediated by cGMP/PKG since the PKG inhibitor KT5823 had no effect on eNOS autoinhibition. The autoinhibition was selective for NO since the co-product l-citrulline had no effect on VIP-induced NOS activation. Similar effects were obtained in rabbit gastric and human intestinal smooth muscle cells. The results suggest that NO produced in smooth muscle cells as a result of the activation of eNOS by VIP exerts an autoinhibitory restraint on eNOS thereby regulating the balance of the VIP/cAMP/PKA and NO/cGMP/PKG pathways that regulate the relaxation of gut smooth muscle.  相似文献   

3.
Nitric oxide (NO) may block apoptosis by inhibiting caspases via S-nitrosylation of cysteines. Here, we investigated whether effector caspases might cleave and thereby inhibit endothelial nitric oxide synthase (eNOS). Exposure of eNOS-transfected COS-7 cells and bovine aortic endothelial cells to staurosporine resulted in significant loss of 135-kDa eNOS protein and activity, and appearance of a 60-kDa eNOS fragment; effects were inhibited by the general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp[OMe]-fluoromethyl ketone (zVAD-fmk). In eNOS-transfected COS-7 cells, staurosporine-induced activation of caspase-3 and poly(ADP-ribose) polymerase (PARP) cleavage coincided with increased eNOS degradation and decreased activity. Loss of eNOS activity was greater than the degree of proteolysis. Incubation of immunoprecipitated eNOS with caspase-3, caspase-6 or caspase-7 resulted in eNOS cleavage. Staurosporine, a general protein kinase inhibitor, also reduced phosphorylation and decreased calmodulin binding, an effect that may explain the reduction in activity. eNOS, therefore, is both an inhibitor of apoptosis and a target of apoptosis-associated proteolysis.  相似文献   

4.
Interferon (IFN)-gamma inhibited the proliferation of rat vascular smooth muscle cells (VSMC) and increased the cyclic GMP (cGMP) concentration in the cells. The dose dependencies of the two effects were similar (IC50 = 4 U/ml for the anti-proliferation and EC50 = 3 U/ml for cGMP formation) and the effect of IFN-gamma was enhanced by tumor necrosis factor-alpha treatment. Furthermore, NG-nitro-L-arginine, a nitric oxide (NO) synthase inhibitor, inhibited both activities induced by IFN-gamma. These findings show that the anti-proliferation and cGMP formation are closely related and that IFN-gamma inhibits the proliferation of rat VSMC by generation of NO through the induction of an NO synthase.  相似文献   

5.
Type II diabetes mellitus (DM) and metabolic syndrome are associated with accelerated restenosis following vascular interventions due to neointimal hyperplasia. The efficacy of nitric oxide (NO)-based therapies is unknown in these environments. Therefore, the aim of this study is to examine the efficacy of NO in preventing neointimal hyperplasia in animal models of type II DM and metabolic syndrome and examine possible mechanisms for differences in outcomes. Aortic vascular smooth muscle cells (VSMC) were harvested from rodent models of type II DM (Zucker diabetic fatty), metabolic syndrome (obese Zucker), and their genetic control (lean Zucker). Interestingly, NO inhibited proliferation and induced G0/G1 cell cycle arrest to the greatest extent in VSMC from rodent models of metabolic syndrome and type II DM compared with controls. This heightened efficacy was associated with increased expression of cyclin-dependent kinase inhibitor p21, but not p27. Using the rat carotid artery injury model to assess the efficacy of NO in vivo, we found that the NO donor PROLI/NO inhibited neointimal hyperplasia to the greatest extent in type II DM rodents, followed by metabolic syndrome, then controls. Increased neointimal hyperplasia correlated with increased reactive oxygen species (ROS) production, as demonstrated by dihydroethidium staining, and NO inhibited this increase most in metabolic syndrome and DM. In conclusion, NO was surprisingly a more effective inhibitor of neointimal hyperplasia following arterial injury in type II DM and metabolic syndrome vs. control. This heightened efficacy may be secondary to greater inhibition of VSMC proliferation through cell cycle arrest and regulation of ROS expression, in addition to other possible unidentified mechanisms that deserve further exploration.  相似文献   

6.
目的:研究逆转录病毒介导诱导型一氧化氮合酶(iNOS)基因转染对体外培养的大鼠主动脉血管平滑肌细胞(VSMC)增殖的影响,探讨iNOS转基因治疗血管移植术后再狭窄的可行性。方法:将不同滴度的病毒上清转染体外培养的VSMC;采用RT-PCR、Western-blot检测VSMC内iNOSmRNA和iNOS蛋白的表达;用Griess法检测iNOS转基因细胞的培养液中一氧化氮(NO)的含量;用改良MTT、法检测iNOS转基因对VSMC增殖的抑制作用。结果:不同滴度的PLXSNiNOS转染体外培养的VSMC48h后,在VSMC内可检测到外源性iNOSmRNA和iNOS蛋白,表达水平随病毒滴度的增加而增强,呈现剂量依赖性;而用最高滴度的PIXSN转染体外培养的VSMC48h后,在VSMC内未能检测到外源性iNOSmRNA和iNOS蛋白表达;iNOS转基因细胞的培养液中NO含量显著增高,同时VSMC增殖受到明显抑制,均呈现剂量依赖性。结论:逆转录病毒介导iNOS基因可高效转染体外培养的VSMC,并在细胞内表达活性的iNOS蛋白,而且产生大量的NO,明显抑制VSMC增殖。为iNOS转基因治疗血管移植术后再狭窄的临床应用提供有力的实验依据。  相似文献   

7.
The regulation of vascular wall homeostasis by nitric oxide (NO) generated by endothelium is being intensively studied. In the present paper, the involvement of NO in the vascular endothelial growth factor (VEGF), insulin or leptin-stimulated proliferation of human endothelial cells (HUVEC) was measured by [3H]thymidine or bromodeoxyuridine incorporation. VEGF and insulin, but not leptin, increased NO generation in HUVEC, as detected with ISO-NO electrode. Proliferation of HUVEC induced by leptin was not changed or was higher in the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME) a nitric oxide synthase (NOS) inhibitor. In contrast, L-NAME blunted the proproliferative effect of VEGF and insulin. Furthermore, we demonstrated that, in human arterial smooth muscle cells (hASMC) transfected with endothelial NOS (eNOS) gene, the generation of biologically active VEGF protein was NO-dependent. Inhibition of NO generation by L-NAME decreased the synthesis of VEGF protein and attenuated HUVEC proliferation induced by conditioned media from transfected hASMC. Endothelium-derived NO seems to participate in VEGF and insulin, but not leptin, mitogenic activity. Additionally, the small amounts of NO released from endothelial cells, as mimicked by eNOS transfection into hASMC, may activate generation of VEGF in sub-endothelial smooth muscle cells, leading to increased synthesis of VEGF protein necessary for turnover and restitution of endothelial cells.  相似文献   

8.
Pancreastatin (PST), a chromogranin A-derived peptide, has an anti-insulin metabolic effect and inhibits growth and proliferation by producing nitric oxide (NO) in HTC rat hepatoma cells. When NO production is blocked, a proliferative effect prevails due to the activation a Galphaq/11-phospholipase C-beta (PLC-beta) pathway, which leads to an increase in [Ca2+]i, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activation. The aim of the present study was to investigate the NO synthase (NOS) isoform that mediates these effects of PST on HTC hepatoma cells and the possible roles of cyclic GMP (cGMP) and cGMP-dependent protein kinase. DNA and protein synthesis in response to PST were measured as [3H]-thymidine and [3H]-leucine incorporation in the presence of various pharmacological inhibitors: N-monomethyl-L-arginine (NMLA, nonspecific NOS inhibitor), L-NIO (endothelial nitric oxide synthase (eNOS) inhibitor), espermidine (neuronal nitric oxide synthase (nNOS) inhibitor), LY83583 (guanylyl cyclase inhibitor), and KT5823 (protein kinase G inhibitor, (PKG)). L-NIO, similarly to NMLA, reverted the inhibitory effect of PST on hepatoma cell into a stimulatory effect on growth and proliferation. Nevertheless, espermidine also prevented the inhibitory effect of PST, but there was no stimulation of growth and proliferation. When guanylyl cyclase activity was blocked, there was again a reversion of the inhibitory effect into a stimulatory action, suggesting that the effect of NO was mediated by the production of cGMP. PKG inhibition prevented the inhibitory effect of PST, but there was no stimulatory effect. Therefore, the inhibitory effect of PST on growth and proliferation of hepatoma cells may be mainly mediated by eNOS activation. In turn, the effect of NO may be mediated by cGMP, whereas other pathways in addition to PKG activation seem to mediate the inhibition of DNA and protein synthesis by PST in HTC hepatoma cells.  相似文献   

9.
A two step model mechanism of steroid action has been recently postulated. In this study, we test the hypothesis that, the biochemical action of estrone (E(1)) on vascular tissue could be performed via genomic and non-genomic actions. Rat aortic rings or vascular smooth muscle cell cultures (VSMC) were used to test the effect of the hormone on nitric oxide (NO) production, protein kinases activities and cell proliferation. Our data showed that estrone increased NO synthesis between 30 s and 20 min treatment, and this stimulatory effect was dependent on MAPK cascade activation, since it was prevented in the presence of a MAPK inhibitor (PD98059). Using a phosphorylation assay, we also showed that E(1) significantly increased MAPK activity. The effect of the hormone on PKC activity was measured in concentrations and time course studies. Direct treatment of rat aortic homogenates with E(1) significantly enhanced PKC activity (1-10 fold increase, p<0.01) at all concentrations (1; 10; 50 nM) and time tested (1-10 min). We demonstrated that 24 h of E(1) treatment markedly increased VSMC proliferation (53% above control), and this effect was suppressed by a PKC inhibitor. The rapid and the long term effects of the hormone were completely suppressed in the presence of an estradiol receptor antagonist (ICI 182780). In summary, we provided evidence that, the steroid exerts both non-genomic and genomic actions, the former associated with MAPK kinase dependent on NO production, and the latter related with induction of VSMC proliferation involving PKC pathway activation.  相似文献   

10.
Extracellular ATP is released from activated platelets and endothelial cells and stimulates proliferation of vascular smooth muscle cells (VSMC). We found that ATP stimulates a profound but transient activation of protein kinase A (PKA) via purinergic P2Y receptors. The specific inhibition of PKA by adenovirus-mediated transduction of the PKA inhibitor (PKI) attenuates VSMC proliferation in response to ATP, suggesting a positive role for transient PKA activation in VSMC proliferation. By contrast, isoproterenol and forskolin, which stimulate a more sustained PKA activation, inhibit VSMC growth as expected. On the other hand, the activity of serum response factor (SRF) and the SRF-dependent expression of smooth muscle (SM) genes, such as SM--actin and SM22, are extremely sensitive to regulation by PKA, and even transient PKA activation by ATP is sufficient for their downregulation. Analysis of the dose responses of PKA activation, VSMC proliferation, SRF activity, and SM gene expression to ATP, with or without PKI overexpression, suggests the following model for the phenotypic modulation of VSMC by ATP, in which the transient PKA activation plays a critical role. At low micromolar doses, ATP elicits a negligible effect on DNA synthesis but induces profound SRF activity and SM gene expression, thus promoting the contractile VSMC phenotype. At high micromolar doses, ATP inhibits SRF activity and SM gene expression and promotes VSMC growth in a manner dependent on transient PKA activation. Transformation of VSMC by high doses of ATP can be prevented and even reversed by inhibition of PKA activity. adenosine triphosphate; purinergic receptors; protein kinase A; serum response factor; proliferation; -actin; SM22  相似文献   

11.
12.
Recent data has indicated that exogenous nitric oxide (NO) has the ability to decrease endogenous NO production by inhibiting the enzyme responsible for its generation, NO synthase (NOS). Our previous studies have indicated that increased generation of reactive oxygen species (ROS) play an important role in the inhibitory event. However, the mechanisms for these effects remain unclear. Previous studies have suggested that NO can activate p21ras. Thus, the objective of this study was to determine whether NO-mediated activation of p21ras is involved in the inhibitory process, and to further elucidate the involvement of ROS. Using primary cultures of ovine pulmonary arterial endothelial cells we demonstrated that the NO donor SpermineNONOate, increased p21ras activity by 2.3-fold compared to untreated cells, and that the farnesyl-transferase inhibitor, alpha-hydroxyfarnesylphosphonic acid, reduced p21ras activity and significantly reduced inhibition of eNOS. The overexpression of p21ras increased, while the overexpression of an NO unresponsive mutant of p21ras (p21ras C118S) reduced, the inhibition of eNOS by NO. Further, we identified an increase in the level of superoxide and peroxynitrite in endothelial cells exposed to NO that was reduced by p21ras C118S transient transfection. Conversely, levels of superoxide and peroxynitrite could be increased by the over expression of wild type p21ras. Similarly, eNOS nitration induced by NO exposure was reduced by p21ras C118S transient transfection, and increased by the overexpression of wild-type p21ras. Finally, results also demonstrated that eNOS itself was a significant producer of superoxide, and that this appeared to be related to a p21ras-dependent increase in phosphorylation of Ser1177. Our results implicate a signaling pathway involving p21ras activation, superoxide generation, and peroxynitrite formation as being important in the NO-mediated inhibition of eNOS.  相似文献   

13.
In the vasculature, physiological levels of nitric oxide (NO) protect against various stressors, including mechanical stretch. While endothelial NO production in response to various stimuli has been studied extensively, the precise mechanism underlying stretch-induced NO production in venous endothelial cells remains incompletely understood. Using a model of continuous cellular stretch, we found that stretch promoted phosphorylation of endothelial NO synthase (eNOS) at Ser1177, Ser633 and Ser615 and NO production in human umbilical vein endothelial cells. Although stretch activated the kinases AMPKα, PKA, Akt, and ERK1/2, stretch-induced eNOS activation was only inhibited by kinase-specific inhibitors of PKA and PI3K/Akt, but not of AMPKα and Erk1/2. Similar results were obtained with knockdown by shRNAs targeting the PKA and Akt genes. Furthermore, inhibition of PKA preferentially attenuated eNOS activation in the early phase, while inhibition of the PI3K/Akt pathway reduced eNOS activation in the late phase, suggesting that the PKA and PI3K/Akt pathways play distinct roles in a time-dependent manner. Finally, we investigated the role of these pathways in stretch-induced endothelial exocytosis and leukocyte adhesion. Interestingly, we found that inhibition of the PI3K/Akt pathway increased stretch-induced Weibel-Palade body exocytosis and leukocyte adhesion, while inhibition of the PKA pathway had the opposite effects, suggesting that the exocytosis-promoting effect of PKA overwhelms the inhibitory effect of PKA-mediated NO production. Taken together, the results suggest that PKA and Akt are important regulators of eNOS activation in venous endothelial cells under mechanical stretch, while playing different roles in the regulation of stretch-induced endothelial exocytosis and leukocyte adhesion.  相似文献   

14.
The proliferation of vascular smooth muscle cells may perform a crucial role in the pathogenesis of diabetic vascular disease. AMPK additionally exerts several salutary effects on vascular function and improves vascular abnormalities. The current study sought to determine whether sodium tanshinone IIA silate (STS) has an inhibitory effect on vascular smooth muscle cell (VSMC) proliferation and migration under high glucose conditions mimicking diabetes without dyslipidemia, and establish the underlying mechanism. In this study, STS promoted the phosphorylation of AMP-activated protein kinase (AMPK) at T172 in VSMCs. VSMC proliferation was enhanced under high glucose (25 mM glucose, HG) versus normal glucose conditions (5.5 mM glucose, NG), and this increase was inhibited significantly by STS treatment. We utilized western blotting analysis to evaluate the effects of STS on cell-cycle regulatory proteins and found that STS increased the expression of p53 and the Cdk inhibitor, p21, subsequent decreased the expression of cell cycle-associated protein, cyclin D1. We further observed that STS arrested cell cycle progression at the G0/G1 phase. Additionally, expression and enzymatic activity of MMP-2, translocation of NF-κB, as well as VSMC migration were suppressed in the presence of STS. Notably, Compound C (CC), a specific inhibitor of AMPK, as well as AMPK siRNA blocked STS-mediated inhibition of VSMC proliferation and migration. We further evaluated its potential for activating AMPK in aortas in animal models of type 2 diabetes and found that Oral administration of STS for 10 days resulted in activation of AMPK in aortas from ob/ob or db/db mice. In conclusion, STS inhibits high glucose-induced VSMC proliferation and migration, possibly through AMPK activation. The growth suppression effect may be attributable to activation of AMPK-p53-p21 signaling, and the inhibitory effect on migration to the AMPK/NF-κB signaling axis.  相似文献   

15.
Hamad AM  Knox AJ 《FEBS letters》2001,506(2):91-96
We have characterised the mechanisms involved in the antiproliferative effect of NO in human airway smooth muscle cells (HASMC). S-Nitroso-N-acetyl penicillamine, a nitric oxide donor, inhibited proliferation in both G(1) and S phases of the cell cycle. Additionally, experiments with 8-bromo-cGMP, haemoglobin, a NO scavenger and zaprinast, a cGMP-specific phosphodiesterase inhibitor, showed that both effects were NO-mediated. The G(1) phase inhibition was cGMP-dependent whereas the S phase inhibition was due to a cGMP-independent inhibition of ribonucleotide reductase. These results demonstrate that NO inhibits HASMC proliferation by cGMP-dependent and -independent mechanisms acting at distinct points in the cell cycle.  相似文献   

16.
Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.  相似文献   

17.
Cyclic nucleotide phosphodiesterase 3 (PDE3) is an important regulator of cyclic adenosine monophosphate (cAMP) signaling within the cardiovascular system. In this study, we examined the role of PDE3A and PDE3B isoforms in regulation of growth of cultured vascular smooth muscle cells (VSMCs) and the mechanisms by which they may affect signaling pathways that mediate mitogen-induced VSMC proliferation. Serum- and PDGF-induced DNA synthesis in VSMCs grown from aortas of PDE3A-deficient (3A-KO) mice was markedly less than that in VSMCs from PDE3A wild type (3A-WT) and PDE3B-deficient (3B-KO) mice. The reduced growth response was accompanied by significantly less phosphorylation of extracellular signal-regulated kinase (ERK) in 3A-KO VSMCs, most likely due to a combination of greater site-specific inhibitory phosphorylation of Raf-1Ser-259 by protein kinase A (PKA) and enhanced dephosphorylation of ERKs due to elevated mitogen-activated protein kinase phosphatase 1 (MKP-1). Furthermore, 3A-KO VSMCs, compared with 3A-WT, exhibited higher basal PKA activity and cAMP response element-binding protein (CREB) phosphorylation, higher levels of p53 and p53 phosphorylation, and elevated p21 protein together with lower levels of Cyclin-D1 and retinoblastoma (Rb) protein and Rb phosphorylation. Adenoviral overexpression of inactive CREB partially restored growth effects of serum in 3A-KO VSMCs. In contrast, exposure of 3A-WT VSMCs to VP16 CREB (active CREB) was associated with inhibition of serum-induced DNA synthesis similar to that in untreated 3A-KO VSMCs. Transfection of 3A-KO VSMCs with p53 siRNA reduced p21 and MKP-1 levels and completely restored growth without affecting amounts of Cyclin-D1 and Rb phosphorylation. We conclude that PDE3A regulates VSMC growth via two complementary pathways, i.e. PKA-catalyzed inhibitory phosphorylation of Raf-1 with resulting inhibition of MAPK signaling and PKA/CREB-mediated induction of p21, leading to G0/G1 cell cycle arrest, as well as by increased accumulation of p53, which induces MKP-1, p21, and WIP1, leading to inhibition of G1 to S cell cycle progression.  相似文献   

18.
Hypoxia stimulates excessive growth of vascular smooth muscle cells (VSMCs) contributing to vascular remodelling. Recent studies have shown that histone deacetylase inhibitors (HDIs) suppress VSMC proliferation and activate eNOS expression. However, the effects of HDI on hypoxia‐induced VSMC growth and the role of activated eNOS in VSMCs are unclear. Using an EdU incorporation assay and flow cytometry analysis, we found that the HDIs, butyrate (Bur) and suberoylanilide hydroxamic acid (SAHA) significantly suppressed the proliferation of hypoxic VSMC lines and induced apoptosis. Remarkable induction of cleaved caspase 3, p21 expression and reduction of PCNA expression were also observed. Increased eNOS expression and enhanced NO secretion by hypoxic VSMC lines were detected using Bur or SAHA treatment. Knockdown of eNOS by siRNA transfection or exposure of hypoxic VSMCs to NO scavengers weakened the effects of Bur and SAHA on the growth of hypoxic VSMCs. In animal experiments, administration of Bur to Wistar rats exposed to hypobaric hypoxia for 28 days ameliorated the thickness and collagen deposition in pulmonary artery walls. Although the mean pulmonary arterial pressure (mPAP) was not obviously decreased with Bur in hypoxic rats, right ventricle hypertrophy index (RVHI) was decreased and the oxygen partial pressure of arterial blood was elevated. Furthermore, cell viability was decreased and eNOS and cleaved caspase 3 were induced in HDI‐treated rat pulmonary arterial SMCs. These findings imply that HDIs prevent hypoxia‐induced VSMC growth, in correlation with activated eNOS expression and activity in hypoxic VSMCs.  相似文献   

19.
Previously, we have demonstrated that increased superoxide generation plays a role in the nitric oxide (NO)-mediated inhibition of endothelial NO synthase (eNOS) in endothelial cells (ECs) and that the overexpression of SOD1 could reduce the inhibitory effect of NO. However, SOD1 overexpression did not completely abolish the inhibition of eNOS by NO, indicating the presence of other inhibitory mechanisms. Because superoxide can be dismutated into hydrogen peroxide (H2O2), in this study we determined whether exposure of ECs to NO resulted in increased generation of H2O2 and the potential role of H2O2 in eNOS inhibition. Our results indicated that H2O2 levels were increased in response to NO. Using adenoviral-mediated infection, we demonstrated that catalase overexpression both increased basal eNOS activity in the absence of NO and provided a significant protective effect on eNOS activity in the presence of NO. This protective effect was associated with a significant decrease in H2O2 levels in the presence of NO. In conclusion, our results indicate that increased levels of H2O2 may be involved in the inhibition of eNOS by NO and that the scavenging of H2O2 may be useful to prevent eNOS inhibition during treatments that involve inhaled NO or NO donors.  相似文献   

20.
Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS) in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (-/-)) is associated with activation of the platelet derived growth factor (PDGF) signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (-/-) mice. Moreover, nitric oxide (NO) negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号