共查询到20条相似文献,搜索用时 15 毫秒
1.
Iu P Kostilenko 《Arkhiv anatomii, gistologii i émbriologii》1984,87(10):60-63
At various regimens of the secretory activity in the palatile salivary glands, changes occurring in the transversal profiles of the postcapillary venules, but not of the blood capillaries, are most noticeable. Under food stimulation of secretion, the former dilate essentially, that can demonstrate certain functional hyperemia developing in the palatine salivary glands. Some previous experiments concerning interpretation of principles on the microcirculatory bed spatial organization give a good reason to suggest that dilatation of the postcapillary venules is connected with an increased blood perfusion in the canals of the preferrable blood stream. The postcapillary dilatation is possible because blood from the precapillaries gets into the capacitance blood microvessels and its volume at that moment is greater than the capacity of the venous microvessels. A suggestion is made that filtrative function of the palatile salivary glands depends on development of the functional hyperemia. It is possible, that this mechanism is universal, since owing to it, reflectory reactions of the salivary glands directed to the immediate secure of the oral cavity with a necessary amount of liquor become possible. 相似文献
2.
Capp CL Dorwart WC Elias NT Hillman SR Lancaster SS Nair RC Ngo BT Rendell MS Smith DM 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2004,137(3):533-546
In prior studies in man, we have demonstrated that pressure-induced hyperemia lasts for prolonged periods as compared to the short-term hyperemia created by proximal arterial occlusion. We have analyzed this phenomenon in our well-studied rat model of skin blood flow. Skin blood flow was measured using laser Doppler techniques in Wistar Kyoto rats at the back, a nutritively perfused site, and at the plantar surface of the paw, where arteriovenous anastomotic perfusion dominates. A customized pressure feedback control device was used to vary applied pressures. At the back, pressures in excess of 80 mmHg resulted in occlusion, whereas at the paw 150 mmHg was required. The peak hyperemic flow after release of pressure was comparable to that elicited by proximal arterial occlusion with a blood pressure cuff. However, the post pressure hyperemia peak descended to a plateau value, which was 50-100% greater than baseline and continued for up to 20 min while the peak following proximal arterial occlusion returned to baseline within 4 min. At the back, post pressure hyperemia reached a maximum after application of 100 mmHg pressure. The application of higher pressures than required for occlusion produced no greater hyperemic response. At the paw, maximum post pressure hyperemia occurred at 100 mmHg, although this pressure level was not totally occlusive. Higher pressures resulted in no greater hyperemia. At the back, 10 min of occlusion produced a maximal peak value whereas 1 min was sufficient at the paw. The application of pressure to a heated probe with subsequent release, produced a hyperemic response. Normalized to baseline blood flow, there was no difference between the hyperemic responses at basal skin temperature and at 44 degrees C. There is a prolonged hyperemic response following local pressure occlusion compared to a much shorter period following proximal ischemic occlusion. One can presume two different mechanisms, one related to ischemia and the other a separate pressure related phenomenon. The thermal vasodilatory response is additive, not synergistic with the post pressure hyperemia we have demonstrated. This finding suggests that different mechanisms are involved in thermal vasodilation and post pressure hyperemia. 相似文献
3.
4.
5.
Sitnikova EIu 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2010,60(6):719-729
The role of specific sensory inflow in the functional maturation of neurons in the area of vibrissal projections in the somatosensory cortex of rats was studied. Animals were subjected to bilateral trimming of whiskers during the first three weeks of postnatal ontogenesis. Quantitative and qualitative characteristics of neuronal responses were analyzed in the "lemniscal" layers IV and Vb and "paralemniscal" layer Va in junior (27-40 PN days) and elder (41-57 PN days) rats. The immediate effect of deafferentation in younger animals consisted in an increase in excitatory responses, which correlated with a deficit of inhibitory reactions. In animals subjected to vibrissectomy, atypical responses were observed in the "lemniscal" and "paralemniscal" layers. This effect may be caused by a derangement of distribution of thalamic afferents in the somatosensory cortex. Elder animals in vibrissectomized group displayed an increase in inhibitory reactions, i.e., the long-term effect of vibrissectomy is the actualization of inhibitory mechanisms. 相似文献
6.
Hooks BM Hires SA Zhang YX Huber D Petreanu L Svoboda K Shepherd GM 《PLoS biology》2011,9(1):e1000572
Rodents move their whiskers to locate and identify objects. Cortical areas involved in vibrissal somatosensation and sensorimotor integration include the vibrissal area of the primary motor cortex (vM1), primary somatosensory cortex (vS1; barrel cortex), and secondary somatosensory cortex (S2). We mapped local excitatory pathways in each area across all cortical layers using glutamate uncaging and laser scanning photostimulation. We analyzed these maps to derive laminar connectivity matrices describing the average strengths of pathways between individual neurons in different layers and between entire cortical layers. In vM1, the strongest projection was L2/3→L5. In vS1, strong projections were L2/3→L5 and L4→L3. L6 input and output were weak in both areas. In S2, L2/3→L5 exceeded the strength of the ascending L4→L3 projection, and local input to L6 was prominent. The most conserved pathways were L2/3→L5, and the most variable were L4→L2/3 and pathways involving L6. Local excitatory circuits in different cortical areas are organized around a prominent descending pathway from L2/3→L5, suggesting that sensory cortices are elaborations on a basic motor cortex-like plan. 相似文献
7.
8.
《Electronic Notes in Theoretical Computer Science》1996,100(2):126-140
We describe methods of localizing functional regions of the mesial wall, based on 47 patients studied intraoperatively or following chronic implantation of subdural electrodes. Somatosensory evoked potentials were recorded to stimulation of posterior tibial, dorsal pudendal, median, and trigeminal nerves. Bipolar cortical stimulation was performed, and in 4 cases movement-related potentials were recorded.The cingulate and marginal sulci formed the inferior and posterior borders of the sensorimotor areas and the supplementary motor area (SMA). The foot sensory area occupied the posterior paracentral lobule, while the genitalia were represented anterior to the foot sensory area, near the cingulate sulcus. The foot motor area was anterior and superior to the sensory areas, but there was overlap in these representations. There was a rough somatotopic organization within the SMA, with the face represented anterior to the hand. However, there was little evidence of the “pre-SMA” region described in monkeys. Complex movements involving more than one extremity were elicited by stimulation of much of the SMA. The region comprising the supplementary sensory area was not clearly identified, but may involve much of the precuneus. Movement-related potentials did not provide additional localizing information, although in some recordings readiness potentials were recorded from the SMA that appeared to be locally generated. 相似文献
9.
Our laboratory investigates how animals acquire sensory data to understand the neural computations that permit complex sensorimotor behaviors. We use the rat whisker system as a model to study active tactile sensing; our aim is to quantitatively describe the spatiotemporal structure of incoming sensory information to place constraints on subsequent neural encoding and processing. In the first part of this paper we describe the steps in the development of a hardware model (a 'sensobot') of the rat whisker array that can perform object feature extraction. We show how this model provides insights into the neurophysiology and behavior of the real animal. In the second part of this paper, we suggest that sensory data acquisition across the whisker array can be quantified using the complete derivative. We use the example of wall-following behavior to illustrate that computing the appropriate spatial gradients across a sensor array would enable an animal or mobile robot to predict the sensory data that will be acquired at the next time step. 相似文献
10.
Kazama K Wang G Frys K Anrather J Iadecola C 《American journal of physiology. Heart and circulatory physiology》2003,285(5):H1890-H1899
We investigated whether angiotensin II (ANG II), a peptide that plays a central role in the genesis of hypertension, alters the coupling between synaptic activity and cerebral blood flow (CBF), a critical homeostatic mechanism that assures adequate cerebral perfusion to active brain regions. The somatosensory cortex was activated by stroking the facial whiskers in anesthetized C57BL/6J mice while local CBF was recorded by laser-Doppler flowmetry. Intravenous ANG II infusion (0.25 mug.kg-1.min-1) increased mean arterial pressure (MAP) from 82 +/- 2 to 102 +/- 3 mmHg (P < 0.05) without affecting resting CBF (P > 0.05). ANG II attenuated the CBF increase produced by whisker stimulation by 65% (P < 0.05) but did not affect the response to hypercapnia or to neocortical application of the nitric oxide donor S-nitroso-N-acetyl penicillamine (P > 0.05). The effect of ANG II on functional hyperemia persisted if the elevation in MAP was offset by controlled hemorrhage or prevented by topical application of the peptide to the activated cortex. ANG II did not reduce the amplitude of the P1 wave of the field potentials evoked by whisker stimulation (P > 0.05). Infusion of phenylephrine increased MAP (P > 0.05 from ANG II) but did not alter the functional hyperemic response (P > 0.05). The data suggest that ANG II alters the coupling between CBF and neural activity. The mechanisms of the effect are not related to the elevation in MAP and/or to inhibition of the synaptic activity evoked by whisker stimulation. The imbalance between CBF and neural activity induced by ANG II may alter the homeostasis of the neuronal microenvironment and contribute to brain dysfunction during ANG II-induced hypertension. 相似文献
11.
12.
Rat granulosa cells were incubated with isoquinolinesulfonamide inhibitors of protein kinases A and C and/or LH, dibutyryl cAMP (dbcAMP), tetradecanoylphorbol acetate (TPA), cholera toxin, or forskolin for 5 h. H7 (25 microM) was observed to inhibit LH, cholera toxin or dbcAMP stimulation of prostaglandin (PGE), and progesterone accumulation. H7 produced inhibition when added as little as 2 min before and as long as 1 h after LH. HA1004 was ineffective against LH or cholera toxin stimulation of PGE or progesterone at up to 100 microM. H9 blocked some LH and forskolin responses at 25 microM, but required a 50 microM concentration to minimally affect TPA stimulation. Cytotoxicity was not observed at the concentrations and times of isoquinolinesulfonamides tested. H7 and H9, therefore, suppress LH stimulation of granulosa cell functions in a dose- and time-dependent manner consistent with inhibition of protein kinases A and/or C, and consonant with a requirement for such kinases in LH action. 相似文献
13.
Liu X Li C Falck JR Harder DR Koehler RC 《American journal of physiology. Heart and circulatory physiology》2012,302(5):H1075-H1085
The increase in cerebral blood flow (CBF) during neuronal activation can be only partially attenuated by individual inhibitors of epoxyeicosatrienoic acids (EETs), cyclooxgenase-2, group I metabotropic glutamate receptors (mGluR), neuronal nitric oxide synthase (nNOS), N-methyl-D-aspartate receptors, or adenosine receptors. Some studies that used a high concentration (500 μM) of the cyclooxygenase-1 inhibitor SC-560 have implicated cyclooxygenase-1 in gliovascular coupling in certain model systems in the mouse. Here, we found that increasing the concentration of SC-560 from 25 μM to 500 μM over whisker barrel cortex in anesthetized rats attenuated the CBF response to whisker stimulation. However, exogenous prostaglandin E(2) restored the response in the presence of 500 μM SC-560 but not in the presence of a cyclooxygenase-2 inhibitor, thereby suggesting a limited permissive role for cyclooxygenase-1. Furthermore, inhibition of the CBF response to whisker stimulation by an EET antagonist persisted in the presence of SC-560 or a cyclooxygenase-2 inhibitor, thereby indicating that the EET-dependent component of vasodilation did not require cyclooxygenase-1 or -2 activity. With combined inhibition of cyclooxygenase-1 and -2, mGluR, nNOS, EETs, N-methyl-D-aspartate receptors, and adenosine 2B receptors, the CBF response was reduced by 60%. We postulated that the inability to completely block the CBF response was due to tissue acidosis resulting from impaired clearance of metabolically produced CO2. We tested this idea by increasing the concentration of superfused bicarbonate from 25 to 60 mM and found a markedly reduced CBF response to hypercapnia. However, increasing bicarbonate had no effect on the initial or steady-state CBF response to whisker stimulation with or without combined inhibition. We conclude that the residual response after inhibition of several known vasodilatory mechanisms is not due to acidosis arising from impaired CO2 clearance when the CBF response is reduced. An unidentified mechanism apparently is responsible for the rapid, residual cortical vasodilation during vibrissal stimulation. 相似文献
14.
In contrast to other ionotropic glutamate receptors, N-methyl-d-aspartate (NMDA) receptor channels are rather stable after the simulation. Brief exposure to NMDA at 50 microM rapidly increased the fluorescence intensity for increased intracellular free Ca(2+) levels in a reversible- and concentration-dependent manner in rat cortical neurons cultured for 3-15 days in vitro (DIV), while EC(50) values were significantly decreased in proportion to cellular maturation from 3 to 15 DIV. Although a constant increase was persistently seen in the fluorescence throughout the sustained exposure to NMDA for 60 min irrespective of the cell maturation from 3 to 15 DIV, the second brief exposure for 5 min resulted in a less efficient increase in the fluorescence than that found after the first brief exposure for 5 min in a manner dependent on intervals between the two repetitive brief exposures. In vitro maturation significantly shortened the interval required for the reduced responsiveness to the second brief exposure, while in immature neurons prolonged intervals were required for the reduced responsiveness to the second brief exposure to NMDA. Moreover, brief exposure to NMDA led to a marked decrease in immunoreactivity to extracellular loop of NR1 subunit in cultured neurons not permeabilized in proportion to the time after washing. These results suggest that cellular maturation would facilitate the desensitization process to repeated stimulation by NMDA, without markedly affecting that to sustained stimulation, through a mechanism related to the decreased number of NMDA receptors expressed at cell surfaces in cultured rat cortical neurons. 相似文献
15.
Responses of cortical neurons in the posterior sigmoid gyrus of cats anesthetized with chloralose to electrical stimulation of somatic and visceral nerves were recorded. Bimodal viscero-somatic neurons are predominant in this part of the cortex and some of them also respond to light. Besides the polysensory modally-specific neurons it was also possible to distinguish a group of modally nonspecific cells (27%), whose responses to different stimuli did not differ statistically from each other. Simultaneous stimulation of visceral and somatic nerves led to facilitation of activity of the long-latency neurons; this was reflected in a decrease of 10 msec in the latent period of the response and an increase in the number of spikes per discharge.A. A. Zhdanov Leningrad University. Tadjik University, Dushanbe. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 574–581, November–December, 1971. 相似文献
16.
17.
18.
19.
The mycelium ofTrichoderma viride grown in the dark under submerged conditions and transferred to membrane filters sporulated only after photoinduction. The
optimum photoinduction of sporulation was reached when applying daylight for 3 min and near ultraviolet radiation (366 nm)
for 10 to 30 sec. After the photoinduction pronounced synthesis of DNA, RNA and protein was observed. The photoinduced sporulation
was partially or fully inhibited in the presence of phenethyl alcohol, actinomycin D, 5-fluorouracil, cycloheximide and ethidium
bromide. The same inhibitors blocked also the photoinduced sporulation of surface growing colonies ofTrichoderma viride. Various inhibitors of synthesis of nucleic acids and protein, inhibitors impairing the function of membranes and certain
other compounds were also effective.
A part of the results presented here was included in the dissertation of J.S. and defended at the Slovak Polytechnical University
in Bratislava. 相似文献
20.