首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported decreases in blood-brain barrier permeability in the ovine fetus at 80% of gestation after antenatal corticosteroids and shown that permeability is not reduced in newborn lambs after postnatal corticosteroids. We now test the hypotheses that exogenous antenatal corticosteroids decrease blood-brain barrier permeability at 60% but not 90% of gestation in ovine fetuses and that endogenous increases in plasma cortisol concentrations are associated with ontogenic decreases in barrier permeability during gestation. Chronically instrumented ovine fetuses were studied 12 h after the last of four 6-mg dexamethasone or placebo injections were given 12 h apart over 48 h to ewes. Fetuses at 80% of gestation from placebo-treated ewes studied under the same protocol were also included. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) to alpha-aminoisobutyric acid. K(i) values were lower in cerebral cortex, caudate nucleus, hippocampus, superior colliculus, thalamus, medulla, and cervical spinal cord in fetuses of dexamethasone- than placebo-treated ewes at 60% but not 90% of gestation. Regional brain K(i) values demonstrated inverse correlations with increases in gestation and plasma cortisol concentrations in most brain regions. We conclude that maternal treatment with exogenous corticosteroids was associated with decreases in blood-brain barrier permeability at 60% but not 90% of gestation and that increases in gestation and endogenous cortisol concentrations were associated with ontogenic decreases in barrier permeability during fetal development.  相似文献   

2.
At 110-111 days gestation, instrumented fetal sheep were administered saline or dexamethasone (2.2 microgram. kg(-1). h(-1) iv) for 48 h. Measurement of fetal blood pressure showed a greater increase in dexamethasone-treated (n = 6) compared with control (n = 5) fetuses (7.3 +/- 2.3 vs. 0.6 +/- 2.3 mmHg, P < 0.05). Fetuses were delivered by cesarean section, and the femoral muscle and brain were obtained under halothane anesthesia. Femoral and middle cerebral arteries (approximately 320-micrometer internal diameter) were evaluated using wire myography. Sensitivity to KCl (2.5-125 mM) and the magnitude of the maximal vasoconstriction to 125 mM K(+) were similar in femoral and middle cerebral arteries from dexamethasone-treated vs. control fetuses. Acetylcholine-induced vasorelaxation was similar in femoral arteries from control and dexamethasone-treated fetuses. Middle cerebral arteries did not relax to acetylcholine. Sensitivity to endothelin-1 (ET-1; 0.1 pM-0.1 microM) and magnitude of the ET-1-induced vasoconstriction were greater in femoral arteries from dexamethasone-treated vs. control fetuses (P < 0.05). Autoradiographical studies with receptor-specific ligands demonstrated increased ET(A)-receptor binding, the principal receptor subtype, in femoral muscle vessels (P < 0.001) but decreased ET(A)-receptor binding in middle cerebral arteries (P < 0.01) from dexamethasone-treated compared with control fetuses. Relatively little ET(B)-receptor binding was evident in all tissues examined. We conclude that hyperreactivity to ET-1, due to increased ET(A)-receptor binding, may be involved in the dexamethasone-induced increase in peripheral vascular resistance in fetal sheep in vivo.  相似文献   

3.
The roles of Rho kinase (ROCK) and cGMP-dependent protein kinase (PKG) in cGMP-mediated relaxation of fetal pulmonary veins exposed to chronic hypoxia (CH) were investigated. Fourth generation pulmonary veins were dissected from near-term fetuses ( approximately 140 days of gestation) delivered from ewes exposed to chronic high altitude hypoxia for approximately 110 days (CH) and from control ewes. After constriction with endothelin-1, 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) caused a similar relaxation of both control and CH vessels. Rp-8-Br-PET-cGMPS (a PKG inhibitor) inhibited whereas Y-27632 (a ROCK inhibitor) augmented relaxation of control veins to 8-Br-cGMP. These effects were significantly diminished in CH veins. PKG protein expression and activity were greater whereas ROCK protein expression and activity were less in CH vessels compared with controls. Phosphorylation of threonine 696 (ROCK substrate) and serine 695 (PKG substrate) of the regulatory myosin phosphatase targeting subunit MYPT1 of myosin light chain (MLC) phosphatase was stimulated to a lesser extent in CH than in control veins by endothelin-1 (ROCK stimulant) and 8-Br-cGMP (PKG stimulant), respectively. The phosphorylation and dephosphorylation of MLC caused by endothelin-1 and 8-Br-cGMP, respectively, were less in CH veins than in controls. These results suggest that CH in utero upregulates PKG activity but attenuates PKG action in fetal pulmonary veins. These effects are offset by the diminished ROCK action on MYPT1 and MLC and thus lead to an unaltered response to cGMP.  相似文献   

4.
An increase in Rho kinase (ROCK) activity is implicated in chronic hypoxia-induced pulmonary hypertension. In the present study, we determined the role of ROCKs in cGMP-dependent protein kinase (PKG)-mediated pulmonary vasodilation of fetal lambs exposed to chronic hypoxia. Fourth generation pulmonary arteries were isolated from near-term fetuses ( approximately 140 days of gestation) delivered from ewes exposed to chronic high altitude hypoxia for approximately 110 days and from control ewes. In vessels constricted to endothelin-1, 8-bromoguanosine-cGMP (8-Br-cGMP) caused a smaller relaxation in chronically hypoxic (CH) vessels compared with controls. Rp-8-Br-PET-cGMPS, a PKG inhibitor, attenuated relaxation to 8-Br-cGMP in control vessels to a greater extent than in CH vessels. Y-27632, a ROCK inhibitor, significantly potentiated 8-Br-cGMP-induced relaxation of CH vessels and had only a minor effect in control vessels. The expression of PKG was increased but was not accompanied with an increase in the activity of the enzyme in CH vessels. The expression of type II ROCK and activity of ROCKs were increased in CH vessels. The phosphorylation of threonine (Thr)696 and Thr850 of the regulatory subunit MYPT1 of myosin light chain phosphatase was inhibited by 8-Br-cGMP to a lesser extent in CH vessels than in controls. The difference was eliminated by Y-27632. These results suggest that chronic hypoxia in utero attenuates PKG-mediated relaxation in pulmonary arteries, partly due to inhibition of PKG activity and partly due to enhanced ROCK activity. Increased ROCK activity may inhibit PKG action through increased phosphorylation of MYPT1 at Thr696 and Thr850.  相似文献   

5.
Hypoxia in the fetus and/or newborn is associated with an increased risk of pulmonary hypertension. The present study tested the hypothesis that long-term high-altitude hypoxemia differentially regulates contractility of fetal pulmonary arteries (PA) and veins (PV) mediated by differences in endothelial NO synthase (eNOS). PA and PV were isolated from near-term fetuses of pregnant ewes maintained at sea level (300 m) or high altitude of 3,801 m for 110 days (arterial Po(2) of 60 Torr). Hypoxia had no effect on the medial wall thickness of pulmonary vessels and did not alter KCl-induced contractions. In PA, hypoxia significantly increased norepinephrine (NE)-induced contractions, which were not affected by eNOS inhibitor N(G)-nitro-l-arginine (l-NNA). In PV, hypoxia had no effect on NE-induced contractions in the absence of l-NNA. l-NNA significantly increased NE-induced contractions in both control and hypoxic PV. In the presence of l-NNA, NE-induced contractions of PV were significantly decreased in hypoxic lambs compared with normoxic animals. Acetylcholine caused relaxations of PV but not PA, and hypoxia significantly decreased both pD(2) and the maximal response of acetylcholine-induced relaxation in PV. Additionally, hypoxia significantly decreased the maximal response of sodium nitroprusside-induced relaxations of both PA and PV. eNOS was detected in the endothelium of both PA and PV, and eNOS protein levels were significantly higher in PV than in PA in normoxic lambs. Hypoxia had no significant effect on eNOS levels in either PA or PV. The results demonstrate heterogeneity of fetal pulmonary arteries and veins in response to long-term high-altitude hypoxia and suggest a likely common mechanism downstream of NO in fetal pulmonary vessel response to chronic hypoxia in utero.  相似文献   

6.
Excessive exposure of the fetus to maternally derived corticosteroids has been linked to the development of adult-onset diseases. To determine if early gestation corticosteroid exposure alters subsequent coronary artery reactivity, we administered dexamethasone (0.28 mg.kg(-1).day(-1)) to pregnant ewes at 27-28 days gestation (term being 145 days). Vascular responsiveness was assessed in endothelium-intact coronary and mesenteric arteries isolated from steroid-exposed and age-matched control fetal sheep at 123-126 days gestation and lambs at 4 mo of age. Lambs exposed to maternal dexamethasone had higher mean arterial blood pressures than the age-matched controls (93 +/- 3 vs. 83 +/- 5 mmHg, P < 0.05). Mesenteric arteries from the steroid-exposed fetuses displayed diminished responses to ANG II, relative to controls. In 4-mo-old lambs, prenatal dexamethasone exposure significantly increased coronary artery vasoconstriction to ANG II, ACh, and U-46619, but not KCl. In contrast, postnatal mesenteric artery reactivity was unaltered by steroid exposure. Compared with fetal mesenteric reactivity, postnatal mesenteric reactivity to ANG II, phenylephrine, and U-46619 was diminished, whereas the response to 120 mmol/l KCl was heightened. Coronary artery ANG II receptor protein expression was not significantly altered by steroid exposure in either age group. These findings demonstrate that early-gestation glucocorticoid exposure programs postnatal elevations in blood pressure and selectively enhances coronary artery responsiveness to second messenger-dependent vasoconstrictors. Glucocorticoid-induced alterations in coronary vascular smooth muscle structure or function may provide a mechanistic link between an adverse intrauterine environment and later cardiovascular disease.  相似文献   

7.
C M Chen  L F Wang  K T Cheng  H H Hsu  B Gau  B Su 《Phytomedicine》2004,11(6):509-515
We investigated the effects of maternal administration of Anoectochilus formosanus extract and dexamethasone on lung maturation in preterm rats. A. formosanus group mothers were tube-fed A. formosanus extract (300 mg/kg body wt./day) for 7 days from days 12-18 of gestation. Dexamethasone group mothers were injected intraperitoneally with dexamethasone (0.2 mg/kg body wt.) in saline on day 18 of gestation. Control group mothers were similarly injected with saline alone. On day 19 of gestation, fetuses were delivered by cesarean section. A. formosanus treatment significantly increased the fetal lung/body weight ratio, as compared to dexamethasone treatment. Saturated phosphatidylcholine levels in fetal lung tissue and growth hormone levels in maternal serum were significantly increased in the A. formosanus- and dexamethasone-treated groups as compared to controls. The histological appearance of preterm rat lungs revealed extensive branching of intermediate airways, denser mesenchyme, and more epithelial tubules in the dexamethasone and A. formosanus groups as compared with the control group. These results suggest that antenatal A. formosanus treatment may play a role in accelerating fetal rat lung maturation.  相似文献   

8.
This study examined the effects of dexamethasone treatment on basal hypothalamo-pituitary-adrenal (HPA) axis function and HPA responses to subsequent acute hypoxemia in the ovine fetus during late gestation. Between 117 and 120 days (term: approximately 145 days), 12 fetal sheep and their mothers were catheterized under halothane anesthesia. From 124 days, 6 fetuses were continuously infused intravenously with dexamethasone (1.80 +/- 0.15 microg.kg(-1).h(-1) in 0.9% saline at 0.5 ml/h) for 48 h, while the remaining 6 fetuses received saline at the same rate. Two days after infusion, when dexamethasone had cleared from the fetal circulation, acute hypoxemia was induced in both groups for 1 h by reducing the maternal fraction of inspired O2. Fetal dexamethasone treatment transiently lowered fetal basal plasma cortisol, but not ACTH, concentrations. However, 2 days after treatment, fetal basal plasma cortisol concentration was elevated without changes in basal ACTH concentration. Despite elevated basal plasma cortisol concentration, the ACTH response to acute hypoxemia was enhanced, and the increment in plasma cortisol levels was maintained, in dexamethasone-treated fetuses. Correlation of fetal plasma ACTH and cortisol concentrations indicated enhanced cortisol output without a change in adrenocortical sensitivity. The enhancements in basal cortisol concentration and the HPA axis responses to acute hypoxemia after dexamethasone treatment were associated with reductions in pituitary and adrenal glucocorticoid receptor mRNA contents, which persisted at 3-4 days after the end of treatment. These data show that prenatal glucocorticoids alter the basal set point of the HPA axis and enhance HPA axis responses to acute stress in the ovine fetus during late gestation.  相似文献   

9.
Early embryonic and late fetal mouse myogenic cells showed distinct patterns of perinatal myosin heavy chain (MHC) isoform expression upon differentiation in vitro. In cultures of somite or limb muscle cells isolated from Day 9 to Day 12 embryos, differentiated cells that expressed perinatal MHC were rare and perinatal MHC was not detectable by immunoblotting. In cultures of limb muscle cells isolated from Day 13 to Day 18 fetuses, in contrast, the perinatal MHC isoform was easily detected and was expressed in a substantial percentage of myocytes and myotubes. Analyses of clonally derived muscle colonies and cytosine arabinoside-treated fetal muscle cell cultures suggested that different fetal muscle cell nuclei initiated perinatal MHC expression at different times. In both embryonic and fetal cell cultures, the embryonic MHC isoform was expressed by all differentiated cells examined. A small number of myotubes in fetal muscle cell cultures showed a mosaic distribution of MHC isoform accumulation in which the perinatal MHC isoform accumulated in a restricted region of the myotube near particular nuclei, whereas the embryonic MHC isoform accumulated throughout the myotube. Thus, the myogenic program of fetal, but not embryonic, mouse myogenic cells includes expression of the perinatal MHC isoform upon differentiation in culture.  相似文献   

10.
Fetal and maternal plasma progesterone and unconjugated oestrone and oestradiol-17 beta concentrations were measured in intact pig fetuses and those in which the pituitary had been destroyed. Progesterone concentrations were significantly higher (P less than 0.05) and oestrogen concentrations significantly lower (P less than 0.01) in hypophysectomized fetuses than in intact fetuses. When fetuses in one uterine horn only were hypophysectomized, oestrogen concentrations in the uterine vein draining this horn were lower than those from the contralateral vein. The results indicate that both fetal and maternal oestrogen concentrations are influenced by the fetal pituitary. When dexamethasone was infused (at 27 micrograms/h for 96 h) into 5 chronically-catheterized hypophysectomized fetuses no changes in peripheral fetal progesterone or oestrone were observed.  相似文献   

11.
Previous work from this laboratory demonstrated that the elevation of maternal plasma corticosteroid concentrations during pregnancy is important for the support of fetal development. Reducing ovine maternal plasma cortisol concentrations to nonpregnant levels stimulates homeostatic responses that defend fetal blood volume. The present study was designed to test the hypothesis that chronic decreases or increases in maternal plasma cortisol concentration alter uterine and placental blood flow and morphology. Three groups of pregnant ewes and their fetuses were chronically catheterized and studied: ewes infused with cortisol (1 mg.kg(-1).day(-1); high cortisol), ewes adrenalectomized and underreplaced with cortisol (0.5 mg.kg(-1).day(-1); low cortisol), and control ewes. The normal increment in uterine blood flow between 120 and 130 days was eliminated in the low-cortisol ewes; conversely, uterine blood flow was increased in the high-cortisol group compared with the control group. Fetal arterial blood pressure was increased in the high-cortisol group compared with controls, but there was no increase in fetal arterial pressure from 120 to 130 days of gestation in the low-cortisol group. The fetuses of both low-cortisol and high-cortisol groups had altered placental morphology, with increased proportions of type B placentomes, and overall reduced fetal placental blood flow. The rate of fetal somatic growth was impaired in both low-cortisol and high-cortisol groups compared with the fetuses in the intact group. The results of this study demonstrate that maternal plasma cortisol during pregnancy is an important contributor to the maternal environment supporting optimal conditions for fetal homeostasis and somatic growth.  相似文献   

12.
Maternal administration of DDAVP induces maternal and fetal plasma hyponatremia, accentuates fetal urine flow, and increases amniotic fluid volume. Fetal hemorrhage represents an acute stress that results in fetal AVP secretion and reduced urine flow rate. In view of the potential therapeutic use of DDAVP for pregnancies with reduced amniotic fluid volume, we sought to examine the impact of maternal hypotonicity during acute fetal hemorrhage. Chronically catheterized pregnant ewes (130 +/- 2 days) were allocated to control or to DDAVP-induced hyponatremia groups. In the latter group, tap water (2,000 ml) was administered intragastrically to the ewe followed by DDAVP (20 microg bolus, 4 microg/h) and a maintenance intravenous infusion of 5% dextrose water for 4 h to achieve maternal hyponatremia of 10-12 meq/l. Thereafter, ovine fetuses from both groups were continuously hemorrhaged to 30% of estimated blood volume over a 60-min period. DDAVP caused similar degree of reductions in plasma sodium and osmolality in pregnant ewes and their fetuses. In response to hemorrhage, DDAVP fetuses showed greater reduction in hematocrit than control fetuses (14 vs. 10%). Both groups of fetuses demonstrated similar increases in plasma AVP concentration. However, the AVP-hemorrhage threshold was greater in DDAVP fetuses (22.5%) than in control (17.5%). Hemorrhage had no significant impact on plasma osmolality, electrolyte levels, or cardiovascular responses in either group of fetuses. Despite similar increases in plasma AVP, DDAVP fetuses preserved fetal urine flow rates, with values threefold those of control fetuses. These results suggest that under conditions of acute fetal stress of hemorrhage, maternal DDAVP may preserve fetal urine flow and amniotic fluid volume.  相似文献   

13.
The aim of the present study was to investigate the effects of administering a high plane diet during early to mid-gestation on the uterine and placental insulin-like growth factor (IGF) system and on systemic IGF-I concentrations in pregnant adolescent ewes with restricted placental growth. Embryos recovered from superovulated ewes inseminated by a single sire were transferred in singleton to the uterus of adolescent recipients. After transfer ewes were offered a high (H) or moderate (M) amount of a complete diet calculated to promote rapid or normal maternal growth rates, respectively. Five ewes from each group were switched from either M to H or H to M diets at day 52 of gestation. Maternal and fetal blood samples and placental tissues were collected from all animals at day 104. Ewes on the high plane diet from mid-gestation (HH, MH groups) had restricted placental mass (P < 0.01) and tended to have smaller fetuses. This was associated with increased maternal plasma IGF-I concentrations (P < 0.001). The pattern of expression of components of the IGF system in the uterus and placenta was studied by in situ hybridization. IGF-I mRNA concentrations were below the limit of detection. IGF-II mRNA expression was high in the fetal mesoderm and present in maternal stroma, but was not influenced by nutritional treatment. In contrast, IGF binding protein 1 (IGFBP-1) mRNA expression was higher (P < 0.05) and IGFBP-3 mRNA expression was lower (P < 0.05) in the endometrial glands of ewes in HH and MH groups. In the fetal trophoblast, IGFBP-3 mRNA expression was higher in the MH group. Type 1 IGF receptor expression was increased (P < 0. 01) in the luminal epithelium of the HM group and IGFBP-2 mRNA expression was highest in the placentome capsule of ewes in the HH group. Together, these results indicate that reprogramming of the uterine and placental IGF axis by maternal nutrition could contribute to placental growth retardation in growing adolescent sheep.  相似文献   

14.
Changes in circulating steroid hormones, the incidence of myometrial contractions, and the onset of labour were all monitored after administration of the 3 beta-hydroxysteroid dehydrogenase inhibitor, epostane, to chronically catheterized ewes and fetuses near term. In all animals the drug induced delivery 33-36 h after injection or infusion into the ewe with the birth of live healthy lambs which showed normal subsequent development. Epostane induced immediate, permanent falls in both maternal and fetal plasma progesterone concentrations, accompanied by increased PGF metabolite concentrations in the uterine vein beginning 15 min after treatment. Of the other hormonal changes observed, the most striking was the pronounced drop in both maternal and fetal plasma cortisol. In the fetus this fall was followed by increasing concentrations of circulating ACTH which eventually restored the cortisol levels. By 12-24 h after epostane a substantial overshoot had occurred and at 27-30 h the fetal plasma cortisol concentrations were as high as those seen during normal parturition at term. No significant changes in maternal plasma oestradiol-17 beta could be detected after epostane treatment or during labour. The incidence of slow myometrial contractions increased significantly during the second 3-h period after epostane, although their duration did not change. Contraction patterns typical of first stage labour were seen from 20 to 24 h. These results show that epostane may be used as a safe, predictable inducing agent in sheep if given 6-10 days before term; the lambs showed no signs of prematurity despite their lowered plasma cortisol concentrations which persisted for some hours before labour was induced.  相似文献   

15.
The effect of maternal nutrition level during the periconception period on the muscle development of fetus and maternal–fetal plasma hormone concentrations in sheep were examined. Estrus was synchronized in 55 Karayaka ewes and were either fed ad libitum (well-fed, WF, n=23) or 0.5×maintenance (under-fed, UF, n=32) 6 days before and 7 days after mating. Non-pregnant ewes (WF, n=13; UF, n=24) and ewes carrying twins (WF, n=1) and female (WF, n=1; UF, n=3) fetuses were removed from the experiment. The singleton male fetuses from well-fed (n=8) and under-fed (n=5) ewes were collected on day 90 of gestation and placental characteristics, fetal BWs and dimensions, fetal organs and muscles weights were recorded. Maternal (on day 7 after mating) and fetal (on day 90 of pregnancy) blood samples were collected to analyze plasma hormone concentrations. Placental characteristics, BW and dimensions, organs and muscles weights of fetuses were not affected by maternal feed intake during the periconception period. Maternal nutrition level did not affect fiber numbers and the muscle cross-sectional area of the fetal longissimus dorsi (LD), semitendinosus (ST) muscles, but the cross-sectional area of the secondary fibers in the fetal LD and ST muscles from the UF ewes were higher than those from the WF ewes (P<0.05). Also, the ratio of secondary to primary fibers in the ST muscle were tended to be lower in the fetuses from the UF ewes (P=0.07). Maternal nutrition level during the periconception period did not cause any significant changes in fetal plasma insulin and maternal and fetal plasma IGF-I, cortisol, progesterone, free T3 and T4 concentrations. However, maternal cortisol concentrations were lower while insulin concentrations were higher in the WF ewes than those in the UF ewes (P<0.05). These results indicate that the reduced maternal feed intake during the periconception period may alter muscle fiber diameter without affecting fiber types, fetal weights and organ developments and plasma hormone concentrations in the fetus.  相似文献   

16.
Maternal overnutrition is associated with predisposition of offspring to cardiovascular disease in later life. Since maternal overnutrition may promote fetal and placental inflammatory responses, we hypothesized that maternal overnutrition/obesity increases expression of fetal cardiac proinflammatory mediators and alter cardiac morphometry. Multiparous ewes were fed either 150% of National Research Council (NRC) nutrient recommendations (overfed) or 100% of NRC requirement (control) from 60 days prior to mating to gestation Day 75 (D75), when ewes were euthanized. An additional cohort of overfed and control ewes were necropsied on D135. Cardiac morphometry, histology, mRNA and protein expression of toll-like receptor 4, iNOS, IL-1a, IL-1b, IL-6, IL-18, CD-14, CD-68, M-CSF and protein levels of phosphorylated I-κB and nuclear factor κB (NF-κB) were examined. Immunohistochemistry was performed to assess neutrophil and monocyte infiltration. Crown rump length, left and right ventricular free wall weights as well as left and right ventricular wall thickness were significantly increased in D75 fetuses of overfed mothers. Hematoxylin and eosin staining revealed irregular myofiber orientation and increased interstitial space in fetal ventricular tissues born to overfed mothers. Oil red O staining exhibited marked lipid droplet accumulation in the overfed fetuses. Overfeeding significantly enhanced TLR4, IL-1a, IL-1b IL-6 expression, promoted phosphorylation of IκB, decreased cytoplasmic NF-κB levels and increased neutrophil and monocyte infiltration. Collectively, these data suggest that maternal overfeeding prior to and throughout gestation leads to inflammation in the fetal heart and alters fetal cardiac morphometry.  相似文献   

17.
High levels of ethanol (EtOH) consumption during pregnancy adversely affect fetal development; however, the effects of lower levels of exposure are less clear. Our objectives were to assess the effects of daily EtOH exposure (3.8 USA standard drinks) on fetal-maternal physiological variables and the fetal brain, particularly white matter. Pregnant ewes received daily intravenous infusions of EtOH (0.75 g/kg maternal body wt over 1 h, 8 fetuses) or saline (8 fetuses) from 95 to 133 days of gestational age (DGA; term ~145 DGA). Maternal and fetal arterial blood was sampled at 131-133 DGA. At necropsy (134 DGA) fetal brains were collected for analysis. Maternal and fetal plasma EtOH concentrations reached similar maximal concentration (~0.11 g/dl) and declined at the same rate. EtOH infusions produced mild reductions in fetal arterial oxygenation but there were no changes in maternal oxygenation, maternal and fetal Pa(CO(2)), or in fetal mean arterial pressure or heart rate. Following EtOH infusions, plasma lactate levels were elevated in ewes and fetuses, but arterial pH fell only in ewes. Fetal body and brain weights were similar between groups. In three of eight EtOH-exposed fetuses there were small subarachnoid hemorrhages in the cerebrum and cerebellum associated with focal cortical neuronal death and gliosis. Overall, there was no evidence of cystic lesions, inflammation, increased apoptosis, or white matter injury. We conclude that daily EtOH exposure during the third trimester-equivalent of ovine pregnancy has modest physiological effects on the fetus and no gross effects on fetal white matter development.  相似文献   

18.
19.
The purpose of this study was to ascertain the time course of changes, whilst suspending the hindlimb and physical exercise training, of myosin light chain (LC) isoform expression in rat soleus and vastus lateralis muscles. Two groups of six rats were suspended by their tails for 1 or 2 weeks, two other groups of ten rats each were subjected to exercise training on a treadmill for 9 weeks, one to an endurance training programme (1-h running at 20 m.min-1 5 days.week-1), and the other to a sprint programme (30-s bouts of running at 60 m.min-1 with rest periods of 5 min). At the end of these experimental procedures, soleus and vastus lateralis superficialis muscles were removed for myosin LC isoform determination by two-dimensional gel electrophoresis. Hindlimb suspension for 2 weeks significantly increased the proportion of fast myosin LC and decreased slow myosin LC expression in the soleus muscle. The pattern of myosin LC was unchanged in the vastus lateralis muscle. Sprint training or endurance training for 9 weeks increased the percentage of slow myosin LC in vastus lateralis muscle, whereas soleus muscle myosin LC was not modified. These data indicate that hindlimb suspension influences myosin LC expression in postural muscle, whereas physical training acts essentially on phasic muscle. There were no differences in myosin LC observed under the influence of sprint- or endurance-training programme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号