首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or without ancillary expression in the heart, utilizing cDNA constructs in which a wild-type (MCK/Mst) or mutated muscle creatine kinase (MCK-3E/Mst) promoter was placed upstream of mouse myostatin cDNA. Transgenic mice harboring these MCK promoters linked to enhanced green fluorescent protein (EGFP) expressed the reporter protein only in skeletal and cardiac muscles (MCK) or in skeletal muscle alone (MCK-3E). Seven-week-old animals were genotyped by PCR of tail DNA or by Southern blot analysis of liver DNA. Myostatin mRNA and protein, measured by RT-PCR and Western blot, respectively, were significantly higher in gastrocnemius, quadriceps, and tibialis anterior of MCK/Mst-transgenic mice compared with wild-type mice. Male MCK/Mst-transgenic mice had 18-24% lower hind- and forelimb muscle weight and 18% reduction in quadriceps and gastrocnemius fiber cross-sectional area and myonuclear number (immunohistochemistry) than wild-type male mice. Male transgenic mice with mutated MCK-3E promoter showed similar effects on muscle mass. However, female transgenic mice with either type of MCK promoter did not differ from wild-type controls in either body weight or skeletal muscle mass. In conclusion, increased expression of myostatin in skeletal muscle is associated with lower muscle mass and decreased fiber size and myonuclear number, decreased cardiac muscle mass, and increased fat mass in male mice, consistent with its role as an inhibitor of skeletal muscle mass. The mechanism of gender specificity remains to be clarified.  相似文献   

2.
Myostatin, a member of the TGF-beta family, negatively regulates skeletal muscle development. Depression of myostatin activity leads to increased muscle growth and carcass lean yield. In an attempt to down-regulate myostatin, transgenic mice were produced with a ribozyme-based construct or a myostatin pro domain construct. Though the expression of the ribozyme was detected, muscle development was not altered by the ribozyme transgene. However, a dramatic muscling phenotype was observed in transgenic mice carrying the myostatin pro domain gene. Expression of the pro domain transgene at 5% of beta-actin mRNA levels resulted in a 17-30% increase in body weight (P < 0.001). The carcass weight of the transgenic mice showed a 22-44% increase compared with nontransgenic littermates at 9 weeks of age (16.05 +/- 0.67 vs. 11.16 +/- 0.28 g in males; 9.99 +/- 0.38 vs. 8.19 +/- 0.19 g in females, P < 0.001). Extreme muscling was present throughout the whole carcass of transgenic mice as hind and fore limbs and trunk weights, all increased significantly (P < 0.001). Epididymal fat pad weight, an indicator of body fat, was significantly decreased in pro domain transgenic mice (P < 0.001). Analysis of muscle morphology indicated that cross-sectional areas of fast-glycolytic fibers (gastrocnemius) and fast-oxidative glycolytic fibers (tibialis) were larger in pro domain transgenic mice than in their controls (P < 0.01), whereas fiber number (gastrocnemius) was not different (P > 0.05). Thus, the muscular phenotype is attributable to myofiber hypertrophy rather than hyperplasia. The results of this study suggest that the over-expression of myostatin pro domain may provide an alternative to myostatin knockouts as a means of increasing muscle mass in other mammals.  相似文献   

3.
The activities of myogenic regulatory factors (MRF) and muscle growth factors increase in muscle that is undergoing regeneration, and may correspond to some specific changes. Little is known about the role of MRFs in masticatory muscles in mdx mice (the model of Duchenne muscular dystrophy) and particularly about their mRNA expression during the process of muscle regeneration. Using Taqman RT-PCR, we examined the mRNA expression of the MRFs myogenin and MyoD1 (myogenic differentiation 1), and of the muscle growth factors myostatin, IGF1 (insulin-like growth factor) and MGF (mechanogrowth factor) in the masseter, temporal and tongue masticatory muscles of mdx mice (n = 6 to 10 per group). The myogenin mRNA expression in the mdx masseter and temporal muscle was found to have increased (P < 0.05), whereas the myostatin mRNA expressions in the mdx masseter (P < 0.005) and tongue (P < 0.05) were found to have diminished compared to those for the controls. The IGF and MGF mRNA amounts in the mdx mice remained unchanged. Inside the mdx animal group, gender-related differences in the mRNA expressions were also found. A higher mRNA expression of myogenin and MyoD1 in the mdx massterer and temporal muscles was found in females in comparison to males, and the level of myostatin was higher in the masseter and tongue muscle (P < 0.001 for all comparisons). Similar gender-related differences were also found within the control groups. This study reveals the intermuscular differences in the mRNA expression pattern of myogenin and myostatin in mdx mice. The existence of these differences implies that dystrophinopathy affects the skeletal muscles differentially. The finding of gender-related differences in the mRNA expression of the examined factors may indicate the importance of hormonal influences on muscle regeneration.  相似文献   

4.
We examined male and female glucose transporter isoform-3 (GLUT3; placenta)-null heterozygous(+/-) mutation-carrying mice and compared them with age- and sex-matched wild-type(+/+) littermates. No difference in postnatal (1-2 days, 6-7 days, 12-13 days, 20-21 days), postsuckling (1-2 mo), and adult (3-6 mo) growth pattern was seen except for an increase in body weight of 9- to 11-mo-old male but not female GLUT3(+/-) mice. This change in male mutant mice was associated with increased total body fat mass, perirenal and epididymal white adipose tissue weight, and hepatic lipid infiltration. These minimally glucose-intolerant male mutant mice demonstrated no change in caloric intake but a decline in basal metabolic rate and insulin resistance. No perturbation in basal circulating glucose concentrations but an increase in insulin concentrations, triglycerides, and total cholesterol was observed in GLUT3(+/-) male mice. Tissue analysis in males and females demonstrated diminished GLUT3 protein in GLUT3(+/-) brain and skeletal muscle with no change in brain and adipose tissue GLUT1 protein concentrations. Furthermore, the male GLUT3(+/-) mice expressed decreased insulin-responsive GLUT4 in white adipose tissue and skeletal muscle sarcolemma. We conclude that the GLUT3(+/-) male mice develop adult-onset adiposity with insulin resistance.  相似文献   

5.
Insulin-like growth factor-1 (IGF-1) is a positive regulator in proliferation and differentiation of skeletal muscle cells, while myostatin (MSTN) is a member of transforming growth factor beta superfamily that acts as a negative regulator of skeletal muscle mass. The present study was performed to detail whether a correlation exists between MSTN and IGF-1 in skeletal muscle of IGF-1 knockout mice (IGF-1(-/-)) and their wild type (WT; i.e., IGF-1(+/+)) littermates. The body weight of IGF-1(-/-) animals was 32% that of WT littermates. The fiber cross-sectional areas (CSA) and number of fibers in M. rectus femoris of IGF-1(-/-) animals were 49 and 59% those of WT animals, respectively. Thus, muscle hypoplasia of IGF-1(-/-) undoubtedly was confirmed. Myostatin mRNA levels and protein levels were similar between M. gastrocnemius of IGF-1(-/-) and WT animals. Myostatin immunoreactivity was similarly localized in muscle fibers of both IGF-1(-/-) and WT M. rectus femoris. The mRNA levels of MyoD family (Myf5, MyoD, MRF4, myogenin) were differentially expressed in IGF-1(-/-)M. gastrocnemius, in which the mRNA expression of MRF4 and myogenin was significantly lower, whereas there were no changes in the mRNA expression of Myf5 and MyoD. These findings first describe that myostatin expression is not influenced by intrinsic failure of IGF-1, although MRF4 and myogenin are downregulated.  相似文献   

6.
Myostatin inhibits myogenesis. Therefore, we sought to determine if mice lacking the myostatin gene [Mstn(-/-)] would lose less muscle mass than wild-type mice during 7 days of hindlimb suspension (HS). Male Mstn(-/-) and wild-type (C57) mice were subjected to HS or served as ground-based controls (n = 6/group). Wild-type mice lost 8% of body mass and approximately 13% of wet mass from biceps femoris, quadriceps femoris, and soleus, whereas the mass of extensor digitorum longus (EDL) was unchanged after HS. Unexpectedly, Mstn(-/-) mice lost more body (13%, P < 0.05) and quadriceps femoris (17%, P < 0.05) mass than wild-type mice and lost 33% of EDL mass (P < 0.01) after HS. Protein expression of myostatin in biceps femoris and quadriceps femoris was not altered, whereas expression of MyoD, Myf-5, and myogenin increased in wild-type mice and tended to decrease in muscles of Mstn(-/-) mice. These data suggest that HS induced myogenesis in wild-type mice to counter atrophy, whereas myogenesis was not induced in Mstn(-/-) mice, thereby resulting in a greater loss of muscle mass.  相似文献   

7.
Myostatin is a well-known negative regulator of skeletal muscle growth. Inhibition of myostatin activity results in increased muscle mass. Myostatin propeptide, as a myostatin antagonist, could be applied to promote meat production in livestock such as pigs. In this study, we generated a transgenic mouse model expressing porcine myostatin propeptide under the control of muscle-specific regulatory elements. The mean body weight of transgenic mice from a line expressing the highest level of porcine myostatin propeptide was increased by 5.4 % (P = 0.023) and 3.2 % (P = 0.031) in males and females, respectively, at 8 weeks of age. Weight of carcass, fore limb and hind limb was respectively increased by 6.0 % (P = 0.038), 9.0 % (P = 0.014), 8.7 % (P = 0.036) in transgenic male mice, compared to wild-type male controls at the age of 9 weeks. Similarly, carcass, fore limb and hind limb of transgenic female mice was 11.4 % (P = 0.002), 14.5 % (P = 0.006) and 14.5 % (P = 0.03) respectively heavier than that of wild-type female mice. The mean cross-section area of muscle fiber was increased by 17 % (P = 0.002) in transgenic mice, in comparison with wild-type controls. These results demonstrated that porcine myostatin propeptide is effective in enhancement of muscle growth. The present study provided useful information for future study on generation of transgenic pigs overexpressing porcine myostatin propeptide for improvement of muscle mass.  相似文献   

8.
Myostatin expression in age and denervation-induced skeletal muscle atrophy   总被引:1,自引:0,他引:1  
Myostatin is hypothesized to regulate skeletal muscle mass and to be a potential target for therapeutic intervention in sarcopenia. To clarify whether myostatin is invariably associated with sarcopenia, this study examined the levels of expression of myostatin mRNA and protein in Sprague Dawley rats during aging- and denervation-induced sarcopenia. The level of myostatin mRNA in the gastrocnemius decreased progressively with age being 9, 34 and 56% lower at 6, 12 and 27 months, respectively, compared with mRNA levels at 1.5 months. In contrast, two low molecular mass isoforms of myostatin protein identified by Western blotting increased progressively with age. With denervation, myostatin mRNA was 31% higher on day 1 but by 14 days after sciatic neurectomy when the muscle had atrophied 50%, myostatin expression decreased 34% relative to the sham operated limb. Western analysis of the denervated gastrocnemius showed that myostatin protein levels varied in parallel with mRNA. These disparate patterns of expression of myostatin during age- and denervation-induced atrophy suggest that the regulation of myostatin is complex and variable depending on whether the atrophy is slowly or rapidly progressive.  相似文献   

9.
We examined the temporal relationship between portacaval anastomosis (PCA), weight gain, changes in skeletal muscle mass and molecular markers of protein synthesis, protein breakdown, and satellite cell proliferation and differentiation. Male Sprague-Dawley rats with end to side PCA (n=24) were compared with sham-operated pair-fed rats (n=24). Whole body weight, lean body mass, and forelimb grip strength were determined at weekly intervals. The skeletal muscle expression of the ubiquitin proteasome system, myostatin, its receptor (the activin 2B receptor) and its signal, cyclin-dependent kinase inhibitor (CDKI) p21, insulin-like growth factor (IGF)-I and its receptor (IGF-I receptor-alpha), and markers of satellite cell proliferation and differentiation were quantified. PCA rats did not gain body weight and had lower lean body mass, forelimb grip strength, and gastrocnemius muscle weight. The skeletal muscle expression of the mRNA of ubiquitin proteasome components was higher in PCA rats in the first 2 wk followed by a lower expression in the subsequent 2 wk (P<0.01). The mRNA and protein of myostatin, activin 2B receptor, and CDKI p21 were higher, whereas IGF-I and its receptor as well as markers of satellite cell function (proliferating nuclear cell antigen, myoD, myf5, and myogenin) were lower at weeks 3 and 4 following PCA (P < 0.05). We conclude that PCA resulted in uninhibited proteolysis in the initial 2 wk. This was followed by an adaptive response in the later 2 wk consisting of an increased expression of myostatin that may have contributed to reduced muscle protein synthesis, impaired satellite cell function, and lower skeletal muscle mass.  相似文献   

10.
Detrimental changes in body composition are often associated with declining levels of testosterone. Here, we evaluated the notion that multipotent mesenchymal stem cells, that give rise to both fat and muscle tissue, can play a significant role to alter existing body composition in the adult. Transgenic mice with targeted androgen receptor (AR) overexpression in stem cells were employed. Wild-type littermate and AR-transgenic male and female mice were gonadectomized and left untreated for 2 months. After the hypogonadal period, mice were then treated with 5α-dihydrotestosterone (DHT) for 6 weeks. After orchidectomy (ORX), wild-type males have reduced lean mass and increased fat mass compared to shams. DHT treatment was beneficial to partially restore body composition. In wild-type females, ovariectomy (OVX) produced a similar change but there was no improvement with DHT. In targeted AR transgenic mice, DHT treatment increased lean and reduced fat mass to sham levels. In contrast to wild-type females, DHT treatment in female transgenic mice significantly ameliorated the increased fat and decreased lean mass changes that result after OVX. Our results show that DHT administration reduces fat mass and increases lean mass in wild-type males but not females, indicating that wild-type females are not as sensitive to androgen treatment. Because both male and female transgenic mice are more responsive than wild-type, results suggest that body composition remains linked to stem cell fate in the adult and that targeted androgen signaling in stem cells can play a significant role to reverse detrimental changes in body composition in both sexes.  相似文献   

11.
本文对中国少数民族23352例(男10070例,女13282例)的体成分进行了分析,以了解中国少数民族脂肪率、肌肉量的现状,探讨体成分随年龄增长的变化规律。研究发现,男性和女性总体上属于超重水平,还没有达到肥胖水平。与南方族群男性相比,北方阿尔泰语系族群的男性四肢脂肪率高、内脏脂肪等级高、水分率低。南方族群中,藏缅语族群、苗瑶语族群、壮侗语族群的四肢脂肪率、内脏脂肪等级、水分率相对接近;南亚语系族群与这3个南方族群差距较大。与南方族群女性相比,北方阿尔泰语系族群的女性躯干、四肢肌肉量大,骨骼重;南方4个族群女性躯干、四肢肌肉量较小,骨骼较轻,骨量、肌肉量彼此接近。随年龄增长,男性骨量下降,水分率增大;上肢脂肪率减小,躯干脂肪率增大,内脏脂肪等级增大,即脂肪向躯干集中,全身总体脂率增大;下肢肌肉量减少,躯干肌肉量下降,最终导致全身总肌肉量下降。随年龄增长,女性上肢的脂肪率和肌肉量没有明显变化,下肢的脂肪率下降,躯干脂肪率和内脏脂肪等级增大,总体脂率增大;躯干肌肉量下降,总肌肉量下降。男性推定骨量下降的节点是50岁,女性是60岁。男性总肌肉量下降的节点是40岁,女性是50岁。男性、女性身体水分率增加的节点都是60岁,内脏脂肪等级增加的节点都是30岁,总脂肪率下降的节点都是60岁,躯干脂肪率增加的节点都是30岁,躯干肌肉量下降的节点都是40岁。研究还发现,体脂率、内脏脂肪等级与血糖呈显著正相关。研究结果反映了中国少数民族从青年到老年的体成分变化的基本规律。  相似文献   

12.
Sex differences in skeletal muscle regeneration are controversial; comparisons of regenerative events between sexes have not been rigorously defined in severe injury models. We comprehensively quantified inflammation and muscle regeneration between sexes and manipulated sex-specific hormones to determine effects on regeneration. Cardiotoxin injury was induced in intact, castrated and ovariectomized female and male mice; ovariectomized mice were replaced with low- or high-dose 17-β estradiol (E(2)) or progesterone (P4). Extent of injury was comparable between intact mice, but females were more efficient in removal of necrotic debris, despite similar tissue levels of inflammatory cells and chemokines. Myofiber size during regeneration was equivalent between intact mice and after castration or ovariectomy (OVX) but was decreased (P < 0.001) in ovariectomized mice with high-dose E(2) replacement. Intermuscular adipocytes were absent in uninjured muscle, whereas adipocyte area was increased among regenerated myofibers in all groups. Interestingly, intermuscular fat was greater (P = 0.03) in intact females at day 14 compared with intact males. Furthermore, castration increased (P = 0.01) and OVX decreased adipocyte accumulation. After OVX, E(2), but not P4, replacement decreased (P ≤ 0.03) fat accumulation. In conclusion, sex-dependent differences in regeneration consisted of more efficient removal of necrosis and increased fat deposition in females with similar injury, inflammation, and regenerated myofiber size; high-dose E(2) decreased myofiber size and fat deposition. Adipocyte accumulation in regenerating muscle was influenced by sex-specific hormones. Recovery following muscle injury was different between males and females, and sex-specific hormones contributed to these differences, suggesting that sex-specific treatments could be beneficial after injury.  相似文献   

13.
The mechanisms by which excessive glucocorticoids cause muscular atrophy remain unclear. We previously demonstrated that dexamethasone increases the expression of myostatin, a negative regulator of skeletal muscle mass, in vitro. In the present study, we tested the hypothesis that dexamethasone-induced muscle loss is associated with increased myostatin expression in vivo. Daily administration (60, 600, 1,200 micro g/kg body wt) of dexamethasone for 5 days resulted in rapid, dose-dependent loss of body weight (-4.0, -13.4, -17.2%, respectively, P < 0.05 for each comparison), and muscle atrophy (6.3, 15.0, 16.6% below controls, respectively). These changes were associated with dose-dependent, marked induction of intramuscular myostatin mRNA (66.3, 450, 527.6% increase above controls, P < 0.05 for each comparison) and protein expression (0.0, 260.5, 318.4% increase above controls, P < 0.05). We found that the effect of dexamethasone on body weight and muscle loss and upregulation of intramuscular myostatin expression was time dependent. When dexamethasone treatment (600 micro g. kg-1. day-1) was extended from 5 to 10 days, the rate of body weight loss was markedly reduced to approximately 2% within this extended period. The concentrations of intramuscular myosin heavy chain type II in dexamethasone-treated rats were significantly lower (-43% after 5-day treatment, -14% after 10-day treatment) than their respective corresponding controls. The intramuscular myostatin concentration in rats treated with dexamethasone for 10 days returned to basal level. Concurrent treatment with RU-486 blocked dexamethasone-induced myostatin expression and significantly attenuated body loss and muscle atrophy. We propose that dexamethasone-induced muscle loss is mediated, at least in part, by the upregulation of myostatin expression through a glucocorticoid receptor-mediated pathway.  相似文献   

14.
Myostatin, a member of the transforming growth factor (TGF)-β superfamily, plays a potent inhibitory role in regulating skeletal muscle mass. Inhibition of myostatin by gene disruption, transgenic (Tg) expression of myostatin propeptide, or injection of propeptide or myostatin antibodies causes a widespread increase in skeletal muscle mass. Several peptides, in addition to myostatin propeptide and myostatin antibodies, can bind directly to and neutralize the activity of myostatin. These include follistatin and follistatin-related gene. Overexpression of follistatin or follistatin-related gene in mice increased the muscle mass as in myostatin knockout mice. Follistatin binds to myostatin but also binds to and inhibits other members of the TGF-β superfamily, notably activins. Therefore, follistatin regulates both myostatin and activins in vivo. We previously reported the development and characterization of several follistatin-derived peptides, including FS I-I (Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y, Murakami T, Uezumi A, Takeda S, Noji S, Sunada Y, Tsuchida K. FASEB J 22: 477-487, 2008). FS I-I retained myostatin-inhibitory activity without affecting the bioactivity of activins. Here, we found that inhibition of myostatin increases skeletal muscle mass and decreases fat accumulation in FS I-I Tg mice. FS I-I Tg mice also showed decreased fat accumulation even on a control diet. Interestingly, the adipocytes in FS I-I Tg mice were much smaller than those of wild-type mice. Furthermore, FS I-I Tg mice were resistant to high-fat diet-induced obesity and hepatic steatosis and had lower hepatic fatty acid levels and altered fatty acid composition compared with control mice. FS I-I Tg mice have improved glucose tolerance when placed on a high-fat diet. These data indicate that inhibiting myostatin with a follistatin-derived peptide provides a novel therapeutic option to decrease adipocyte size, prevent obesity and hepatic steatosis, and improve glucose tolerance.  相似文献   

15.
Inhibitors of myostatin, a negative regulator of skeletal muscle mass, are being developed to mitigate aging-related muscle loss. Knock-out (KO) mouse studies suggest myostatin also affects adiposity, glucose handling and cardiac growth. However, the cardiac consequences of inhibiting myostatin remain unclear. Myostatin inhibition can potentiate cardiac growth in specific settings ( Morissette et al., 2006) , a concern because of cardiac hypertrophy is associated with adverse clinical outcomes. Therefore, we examined the systemic and cardiac effects of myostatin deletion in aged mice (27–30 months old). Heart mass increased comparably in both wild-type (WT) and KO mice. Aged KO mice maintained twice as much quadriceps mass as aged WT; however, both groups lost the same percentage (36%) of adult muscle mass. Dual-energy X-ray absorptiometry revealed increased bone density, mineral content, and area in aged KO vs. aged WT mice. Serum insulin and glucose levels were lower in KO mice. Echocardiography showed preserved cardiac function with better fractional shortening (58.1% vs. 49.4%, P  = 0.002) and smaller left ventricular diastolic diameters (3.41 vs. 2.71, P  = 0.012) in KO vs. WT mice. Phospholamban phosphorylation was increased 3.3-fold in KO hearts ( P  < 0.05), without changes in total phospholamban, sarco(endo)plasmic reticulum calcium ATPase 2a or calsequestrin. Aged KO hearts showed less fibrosis by Masson's Trichrome staining. Thus, myostatin deletion does not affect aging-related increases in cardiac mass and appears beneficial for bone density, insulin sensitivity and heart function in senescent mice. These results suggest that clinical interventions designed to inhibit skeletal muscle mass loss with aging could have beneficial effects on other organ systems as well.  相似文献   

16.
17.
Groups of young, adult males and females performed the handgrip and standing long jump tests. Their total forearm and leg volumes were calculated from a series of circumference and length measurements, and the lean volumes (bone + muscle) calculated by taking the skinfold thickness into consideration. In the handgrip, the mean female performance was 298 N compared with 496 N for the males. In the standing long jump, mean performance expressed as distance x body mass was 87.3 kg.m for females compared with 137.7 kg.m for males. These superior performances of males could simply reflect their greater muscle mass, as the mean lean volumes of female and male limbs respectively were 0.54 l and 0.89 l for forearms, and 11.82 l and 14.82 l for the two legs. However, when the performances of males and females were grouped by lean limb volume, it was found that while in both tests there were linear relationships, males and females did not share a common line. In both tests the male relationship was at a higher level than the female; therefore, for a given lean volume, the male performance was significantly superior to that of the female. The gender difference found in this study has not been seen in other studies in which the performance of skeletal muscle has been related to the cross-sectional area of the active muscles and the possible reasons for the differences are considered.  相似文献   

18.
本文采用生物阻抗分析法,研究了布朗族成人的体成分特点。我们在云南省测量了604例(男性248例,女性356例)布朗族成人19项身体成分指标,运用Excel 2003、Spss 19.0对其各项指标进行统计分析。结果显示,男性全身脂肪分布特征为躯干和下肢的脂肪率都大于上肢脂肪率,女性脂肪率从大到小依次为下肢、躯干、上肢;男、女性双侧下肢脂肪率和肌肉量接近,左上肢肌肉量低、脂肪率高;布朗族男性的身高、体质量、肌肉量、推定骨量、总能量代谢、水分率、内脏脂肪等级均大于女性,而体脂率、BMI小于女性。随着年龄的增长,布朗族成人身体肌肉量、骨量、下肢脂肪率、能量代谢等呈明显下降,而内脏脂肪等级明显增加。与云南汉族比较,布朗族成人的体脂率较低、肌肉较发达。  相似文献   

19.
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4–6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.  相似文献   

20.
Seasonal Variation in Mate Choice of Photinus ignitus Fireflies   总被引:2,自引:1,他引:1  
Mate choice by either sex may vary with changes in the associated costs and benefits, determined by factors such as the availability of potential mates and variation in mate quality. We examined seasonal variation in operational sex ratio, courtship behavior, spermatophore mass, egg count, and the relationship between morphological traits and mating success in Photinus ignitus fireflies to determine if mate choice in either sex varied with the availability and relative reproductive investment of fertilizable females and sexually active males. Successfully mating males had larger lanterns than unsuccessful males when the operational sex ratio was male‐biased. In addition, female responsiveness to male signals increased as the number of courting males decreased, and male spermatophore mass decreased with body size across the mating season. Successfully mating females had larger body mass than unsuccessful females. Female body mass predicted egg count and female rejection by males increased as the season progressed and female size decreased. These results suggest that both male and female P. ignitus exhibit mate choice, and that such choice is influenced by seasonal variation in the abundance and quality of potential mates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号