首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although hyperglycemia is common in patients with acute myocardial infarction (MI), the underlying mechanisms are largely unknown. Insulin signaling plays a key role in the regulation of glucose homeostasis. In this study, we test the hypothesis that rapid alteration of insulin signaling pathways could be a potential contributor to acute hyperglycemia after MI. Male rats were used to produce MI by ligation of the left anterior descending coronary artery. Plasma glucose and insulin levels were significantly higher in MI rats than those in controls. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) was reduced significantly in the liver tissue of MI rats compared with controls, followed by decreased attachment of phosphatidylinositol 3-kinase (PI3K) p85 subunit with IRS1 and Akt phosphorylation. However, insulin-stimulated signaling was not altered significantly in skeletal muscle after MI. The relative mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and G6Pase were slightly higher in the liver tissue of MI rats than those in controls. Rosiglitazone (ROSI) markedly restored hepatic insulin signaling, inhibited gluconeogenesis and reduced plasma glucose levels in MI rats. Insulin resistance develops rapidly in liver but not skeletal muscle after MI, which contributes to acute hyperglycemia. Therapy aimed at potentiating hepatic insulin signaling may be beneficial for MI-induced hyperglycemia.  相似文献   

2.
Key pathways like insulin signaling, AMP activated kinase (AMPK) activation and inflammatory signaling are involved in the complex pathological network of hepatic insulin resistance. Our aim is to investigate whether grape seed proanthocyanidins (GSP) and metformin (MET) target any of these pathways in insulin resistant rat liver. Albino Wistar rats were rendered insulin resistant by feeding a high fat-fructose diet (HFFD). Either GSP (100 mg/kg b.w), MET(50 mg/kg b.w) or both were administered to insulin resistant rats as therapeutic options. HFFD-feeding caused hyperglycemia, hyperinsulinemia, increased gluconeogenesis, decreased tyrosine phosphorylation of insulin receptor-β(IR-β) and insulin receptor substrate-1 (IRS-1) and increased serine phosphorylation of IRS-1. The association of p85α subunit of phosphotidyl inositol 3 kinase(PI3K) with IRS-1 and subsequent Akt phosphorylation were reduced while the expression of mitogen activated protein kinases (MAPK) were increased in HFFD rats. Both MET and GSP reduced hyperglycemia and hyperinsulinemia and improved glycolysis, tyrosine phosphorylation of IR-β and IRS-1, IRS-1-PI3K association and Akt activation. However, activation of tumor necrosis factor-α, interleukin-6, leptin and suppressor of cytokine signaling-3 and reduction in adiponectin caused by chronic HFFD feeding were reversed by GSP better than by MET. Activation of AMPK by GSP was much less compared to that by MET. These findings suggest that GSP might activate PI3K pathway and promote insulin action by reducing serine kinase activation and cytokine signaling and MET by targeting AMPK. The beneficial effects were enhanced during combination therapy. Thus, combination therapy with MET and GSP may be considered for the management of metabolic syndrome.  相似文献   

3.
4.
5.
Increased accumulation of methylglyoxal (MG) has been linked to different insulin resistance states including diabetes and hypertension. In this study, the effects of MG on insulin signaling pathway were investigated. Following 9 weeks of fructose treatment, an insulin resistance state was developed in Sprague-Dawley (SD) rats, demonstrated as increased triglyceride and insulin levels, high blood pressure, and decreased insulin-stimulated glucose uptake by adipose tissue. More importantly, we observed a close correlation between the development of insulin resistance and elevated MG level in serum and adipose tissue. Both insulin resistance state and the elevated MG level were reversed by the MG scavenger, N-acetyl cysteine (NAC). When 3T3-L1 adipocytes were treated directly with MG, the impaired insulin signaling was also observed, indicated by decreased insulin-induced insulin-receptor substrate-1 (IRS-1) tyrosine phosphorylation and the decreased kinase activity of phosphatidylinositol (PI) 3-kinase (PI3K). The ability of NAC to block MG-impairment of PI3K activity and IRS-1 phosphorylation further confirmed the role of MG in the development of insulin resistance. In conclusion, the increase in endogenous MG accumulation impairs insulin-signaling pathway and decreases insulin-stimulated glucose uptake in adipose tissue, which may contribute to the development of insulin resistance.  相似文献   

6.
Insulin promotes hepatic apolipoprotein B100 (apoB100) degradation, whereas insulin resistance is a major cause of hepatic apoB100/triglyceride overproduction in type 2 diabetes. The cellular trafficking receptor sortilin 1 (Sort1) was recently identified to transport apoB100 to the lysosome for degradation in the liver and thus regulate plasma cholesterol and triglyceride levels. Genetic variation of SORT1 was strongly associated with cardiovascular disease risk in humans. The major goal of this study is to investigate the effect and molecular mechanism of insulin regulation of Sort1. Results showed that insulin induced Sort1 protein, but not mRNA, in AML12 cells. Treatment of PI3K or AKT inhibitors decreased Sort1 protein, whereas expression of constitutively active AKT induced Sort1 protein in AML12 cells. Consistently, hepatic Sort1 was down-regulated in diabetic mice, which was partially restored after the administration of the insulin sensitizer metformin. LC-MS/MS analysis further revealed that serine phosphorylation of Sort1 protein was required for insulin induction of Sort1 in a casein kinase 2-dependent manner and that inhibition of PI3K signaling or prevention of Sort1 phosphorylation accelerated proteasome-dependent Sort1 degradation. Administration of a PI3K inhibitor to mice decreased hepatic Sort1 protein and increased plasma cholesterol and triglyceride levels. Adenovirus-mediated overexpression of Sort1 in the liver prevented PI3K inhibitor-induced Sort1 down-regulation and decreased plasma triglyceride but had no effect on plasma cholesterol in mice. This study identified Sort1 as a novel target of insulin signaling and suggests that Sort1 may play a role in altered hepatic apoB100 metabolism in insulin-resistant conditions.  相似文献   

7.
Nutritional excess and/or obesity represent well-known predisposition factors for the development of non-insulin-dependent diabetes mellitus (NIDDM). However, molecular links between obesity and NIDDM are only beginning to emerge. Here, we demonstrate that nutrients suppress phosphatidylinositol 3 (PI3)-kinase/Akt signaling via Raptor-dependent mTOR (mammalian target of rapamycin)-mediated phosphorylation of insulin receptor substrate 1 (IRS-1). Raptor directly binds to and serves as a scaffold for mTOR-mediated phosphorylation of IRS-1 on Ser636/639. These serines lie close to the Y(632)MPM motif that is implicated in the binding of p85alpha/p110alpha PI3-kinase to IRS-1 upon insulin stimulation. Phosphomimicking mutations of these serines block insulin-stimulated activation of IRS-1-associated PI3-kinase. Knockdown of Raptor as well as activators of the LKB1/AMPK pathway, such as the widely used antidiabetic compound metformin, suppress IRS-1 Ser636/639 phosphorylation and reverse mTOR-mediated inhibition on PI3-kinase/Akt signaling. Thus, diabetes-related hyperglycemia hyperactivates the mTOR pathway and may lead to insulin resistance due to suppression of IRS-1-dependent PI3-kinase/Akt signaling.  相似文献   

8.
Decreased GLUT4 expression, impaired insulin receptor (IR), IRS-1, and pp60/IRS-3 tyrosine phosphorylation are characteristics of adipocytes from insulin-resistant animal models and obese NIDDM humans. However, the sequence of events leading to the development of insulin signaling defects and the significance of decreased GLUT4 expression in causing adipocyte insulin resistance are unknown. The present study used male heterozygous GLUT4 knockout mice (GLUT4(+/-)) as a novel model of diabetes to study the development of insulin signaling defects in adipocytes with the progression of whole body insulin resistance and diabetes. Male GLUT4(+/-) mice with normal fed glycemia and insulinemia (N/N), normal fed glycemia and hyperinsulinemia (N/H), and fed hyperglycemia with hyperinsulinemia (H/H) exist at all ages. The expression of GLUT4 protein and the maximal insulin-stimulated glucose transport was 50% decreased in adipocytes from all three groups. Insulin signaling was normal in N/N adipose cells. From 35 to 70% reductions in insulin-stimulated tyrosine phosphorylation of IR, IRS-1, and pp60/IRS-3 were noted with no changes in the cellular content of IR, IRS-1, and p85 in N/H adipocytes. Insulin-stimulated protein tyrosine phosphorylation was further decreased to 12-23% in H/H adipose cells accompanied by 42% decreased IR and 80% increased p85 expression. Insulin-stimulated, IRS-1-associated PI3 kinase activity was decreased by 20% in N/H and 68% reduced in H/H GLUT4(+/-) adipocytes. However, total insulin-stimulated PI3 kinase activity was normal in H/H GLUT4(+/-) adipocytes. Taken together, these results strongly suggest that hyperinsulinemia triggers a reduction of IR tyrosine kinase activity that is further exacerbated by the appearance of hyperglycemia. However, the insulin signaling cascade has sufficient plasticity to accommodate significant changes in specific components without further reducing glucose uptake. Furthermore, the data indicate that the cellular content of GLUT4 is the rate-limiting factor in mediating maximal insulin-stimulated glucose uptake in GLUT4(+/-) adipocytes.  相似文献   

9.
Acute insulin resistance is common after injury, infection, and critical illness. To investigate the role of reactive oxygen species (ROS) in critical illness diabetes, we measured hepatic ROS, which rapidly increased in mouse liver. Overexpression of superoxide dismutase 2, which decreased mitochondrial ROS levels, protected mice from the development of acute hepatic insulin resistance. Insulin-induced intracellular signaling was dramatically decreased, and cellular stress signaling was rapidly increased after injury, resulting in the hyperglycemia of critical illness diabetes. Insulin-induced intracellular signaling, activation of stress (c-Jun N-terminal kinase) signaling, and glucose metabolism were all normalized by superoxide dismutase 2 overexpression or by pretreatment with antioxidants. Thus, ROS play an important role in the development of acute hepatic insulin resistance and activation of stress signaling after injury.  相似文献   

10.
Inducible nitric-oxide synthase (iNOS), a major mediator of inflammation, plays an important role in obesity-induced insulin resistance. Inhibition of iNOS by gene disruption or pharmacological inhibitors reverses or ameliorates obesity-induced insulin resistance in skeletal muscle and liver in mice. It is unknown, however, whether increased expression of iNOS is sufficient to cause insulin resistance in vivo. To address this issue, we generated liver-specific iNOS transgenic (L-iNOS-Tg) mice, where expression of the transgene, iNOS, is regulated under mouse albumin promoter. L-iNOS-Tg mice exhibited mild hyperglycemia, hyperinsulinemia, insulin resistance, and impaired insulin-induced suppression of hepatic glucose output, as compared with wild type (WT) littermates. Insulin-stimulated phosphorylation of insulin receptor substrate-1 (IRS-1) and -2, and Akt was significantly attenuated in liver, but not in skeletal muscle, of L-iNOS-Tg mice relative to WT mice without changes in insulin receptor phosphorylation. Moreover, liver-specific iNOS expression abrogated insulin-stimulated phosphorylation of glycogen synthase kinase-3β, forkhead box O1, and mTOR (mammalian target of rapamycin), endogenous substrates of Akt, along with increased S-nitrosylation of Akt relative to WT mice. However, the expression of insulin receptor, IRS-1, IRS-2, Akt, glycogen synthase kinase-3β, forkhead box O1, protein-tyrosine phosphatase-1B, PTEN (phosphatase and tensin homolog), and p85 phosphatidylinositol 3-kinase was not altered by iNOS transgene. Hyperglycemia was associated with elevated glycogen phosphorylase activity and decreased glycogen synthase activity in the liver of L-iNOS-Tg mice, whereas phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and proliferator-activated receptor γ coactivator-1α expression were not altered. These results clearly indicate that selective expression of iNOS in liver causes hepatic insulin resistance along with deranged insulin signaling, leading to hyperglycemia and hyperinsulinemia. Our data highlight a critical role for iNOS in the development of hepatic insulin resistance and hyperglycemia.  相似文献   

11.
Hepatic overproduction of apolipoprotein B (apoB)-containing lipoproteins is characteristic of the dyslipidemia associated with insulin resistance. Recently, we demonstrated that the flavonoid naringenin, like insulin, decreased apoB secretion from HepG2 cells by activation of both the phosphoinositide-3-kinase (PI3-K) pathway and the mitogen-activated protein kinase/extracellular-regulated kinase (MAPK(erk)) pathway. In the present study, we determined whether naringenin-induced signaling required the insulin receptor (IR) and sensitized the cell to the effects of insulin, and whether the kinetics of apoB assembly and secretion in cells exposed to naringenin were similar to those of insulin. Immunoblot analysis revealed that insulin stimulated maximal phosphorylation of IR and IR substrate-1 after 10 min, whereas naringenin did not affect either at any time point up to 60 min. The combination of naringenin and submaximal concentrations of insulin potentiated extracellular-regulated kinase 1/2 activation and enhanced upregulation of the LDL receptor, downregulation of microsomal triglyceride transfer protein expression, and inhibition of apoB-100 secretion. Multicompartmental modeling of apoB pulse-chase studies revealed that attenuation of secreted radiolabeled apoB in naringenin- or insulin-treated cells was similar under lipoprotein-deficient or oleate-stimulated conditions. Naringenin and insulin both stimulated intracellular apoB degradation via a kinetically defined rapid pathway. Therefore, naringenin, like insulin, inhibits apoB secretion through activation of both PI3-K and MAPK(erk) signaling, resulting in similar kinetics of apoB secretion. However, the mechanism for naringenin-induced signaling is independent of the IR. Naringenin represents a possible strategy for reduction of hepatic apoB secretion, particularly in the setting of insulin resistance.  相似文献   

12.
Atypical antipsychotic drugs such as Olanzapine induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying the metabolic side-effects of these centrally acting drugs are still unknown to a large extent. We compared the effects of peripheral (intragastric; 3 mg/kg/h) versus central (intracerebroventricular; 30 μg/kg/h) administration of Olanzapine on glucose metabolism using the stable isotope dilution technique (Experiment 1) in combination with low and high hyperinsulinemic-euglycemic clamps (Experiments 2 and 3), in order to evaluate hepatic and extra-hepatic insulin sensitivity, in adult male Wistar rats. Blood glucose, plasma corticosterone and insulin levels were measured alongside endogenous glucose production and glucose disappearance. Livers were harvested to determine glycogen content. Under basal conditions peripheral administration of Olanzapine induced pronounced hyperglycemia without a significant increase in hepatic glucose production (Experiment 1). The clamp experiments revealed a clear insulin resistance both at hepatic (Experiment 2) and extra-hepatic levels (Experiment 3). The induction of insulin resistance in Experiments 2 and 3 was supported by decreased hepatic glycogen stores in Olanzapine-treated rats. Central administration of Olanzapine, however, did not result in any significant changes in blood glucose, plasma insulin or corticosterone concentrations nor in glucose production. In conclusion, acute intragastric administration of Olanzapine leads to hyperglycemia and insulin resistance in male rats. The metabolic side-effects of Olanzapine appear to be mediated primarily via a peripheral mechanism, and not to have a central origin.  相似文献   

13.
Obesity is associated with inflammation and increased expression of suppressor of cytokine signaling (SOCS) proteins, which inhibit cytokine and insulin signaling. Thus, reducing SOCS expression could prevent the development of obesity-induced insulin resistance. Using SOCS-1 knockout mice, we investigated the contribution of SOCS-1 in the development of insulin resistance induced by a high-fat diet (HFD). SOCS-1 knockout mice on HFD gained 70% more weight, displayed a 2.3-fold increase in epididymal fat pads mass and increased hepatic lipid content. This was accompanied by increased mRNA expression of leptin and the macrophage marker CD68 in white adipose tissue and of SREBP1c and FAS in liver. HFD also induced hyperglycemia in SOCS-1 deficient mice with impairment of glucose and insulin tolerance tests. Thus, despite the role of SOCS proteins in obesity-related insulin resistance, SOCS-1 deficiency alone is not able to prevent insulin resistance induced by a diet rich in fat.  相似文献   

14.
Insulin receptor substrate (Irs) mediates metabolic actions of insulin. Here, we show that hepatic Irs1 and Irs2 function in a distinct manner in the regulation of glucose homeostasis. The PI3K activity associated with Irs2 began to increase during fasting, reached its peak immediately after refeeding, and decreased rapidly thereafter. By contrast, the PI3K activity associated with Irs1 began to increase a few hours after refeeding and reached its peak thereafter. The data indicate that Irs2 mainly functions during fasting and immediately after refeeding, and Irs1 functions primarily after refeeding. In fact, liver-specific Irs1-knockout mice failed to exhibit insulin resistance during fasting, but showed insulin resistance after refeeding; conversely, liver-specific Irs2-knockout mice displayed insulin resistance during fasting but not after refeeding. We propose the concept of the existence of a dynamic relay between Irs1 and Irs2 in hepatic insulin signaling during fasting and feeding.  相似文献   

15.
Insulin withdrawal induces apoptosis via a free radical-mediated mechanism   总被引:1,自引:0,他引:1  
Diabetes is characterized by chronic hyperglycemia as well as insulin deficiency or resistance. However, the majority of research has focused on the consequences of hyperglycemia in development of diabetic complications, whereas the effects of insulin deficiency or resistance, independent of hyperglycemia, have received little attention. Since insulin is a well known cytoprotective factor, we hypothesized that its removal could significantly impact cell survival. To examine this possibility, cultured neonatal cardiomyocytes were subjected to insulin withdrawal and examined for apoptosis. Insulin deficient cells succumbed to apoptosis, an effect associated with impaired PI3-kinase/Akt signaling and reduction in the Bcl-2 to Bax ratio. Perhaps more importantly, superoxide generation was altered in cells subjected to insulin withdrawal. Removal of insulin caused a significant increase in reactive oxygen species production and resulted in oxidative mitochondrial DNA damage the latter effect is associated with impaired expression of mitochondrially encoded proteins that make up the electron transport chain. Significantly, the effects of insulin withdrawal could be mitigated by treatment with the antioxidant, Tiron. Collectively, these data demonstrate that insulin deficiency leads to apoptosis and suggest a role for oxidative mitochondrial DNA damage in this cascade.  相似文献   

16.
Hyperglycemia and insulin resistance induced by acute injuries or critical illness are associated with increased mortality and morbidity, as well as later development of type 2 diabetes. The molecular mechanisms underlying the acute onset of insulin resistance following critical illness remain poorly understood. In the present studies, the roles of serine kinases, inhibitory κB kinase (IKK) and c-Jun NH(2)-terminal kinase (JNK), in the acute development of hepatic insulin resistance were investigated. In our animal model of critical illness diabetes, activation of hepatic IKK and JNK was observed as early as 15 min, concomitant with the rapid impairment of hepatic insulin signaling and increased serine phosphorylation of insulin receptor substrate 1. Inhibition of IKKα or IKKβ, or both, by adenovirus vector-mediated expression of dominant-negative IKKα or IKKβ in liver partially restored insulin signaling. Similarly, inhibition of JNK1 kinase by expression of dominant-negative JNK1 also resulted in improved hepatic insulin signaling, indicating that IKK and JNK1 kinases contribute to critical illness-induced insulin resistance in liver.  相似文献   

17.
Low-intensity electrical current (or mild electrical stimulation; MES) influences signal transduction and activates phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Because insulin resistance is characterized by a marked reduction in insulin-stimulated PI3K-mediated activation of Akt, we asked whether MES could increase Akt phosphorylation and ameliorate insulin resistance. In addition, it was also previously reported that heat shock protein 72 (Hsp72) alleviates hyperglycemia. Thus, we applied MES in combination with heat shock (HS) to in vitro and in vivo models of insulin resistance. Here we show that 10-min treatment with MES at 5 V (0.1 ms pulse duration) together with HS at 42°C increased the phosphorylation of insulin signaling molecules such as insulin receptor substrate (IRS) and Akt in HepG2 cells maintained in high-glucose medium. MES (12 V)+mild HS treatment of high fat-fed mice also increased the phosphorylation of insulin receptor β subunit (IRβ) and Akt in mice liver. In high fat-fed mice and db/db mice, MES+HS treatment for 10 min applied twice a week for 12–15 weeks significantly decreased fasting blood glucose and insulin levels and improved insulin sensitivity. The treated mice showed significantly lower weight of visceral and subcutaneous fat, a markedly improved fatty liver and decreased size of adipocytes. Our findings indicated that the combination of MES and HS alleviated insulin resistance and improved fat metabolism in diabetes mouse models, in part, by enhancing the insulin signaling pathway.  相似文献   

18.
19.
20.
Hepatic insulin resistance is one of the characteristics of type 2 diabetes and contributes to the development of hyperglycemia. How changes in hepatic glucose flux lead to insulin resistance is not clearly defined. We determined the effects of decreasing the levels of hepatic fructose 2,6-bisphosphate (F26P(2)), a key regulator of glucose metabolism, on hepatic glucose flux in the normal 129J mice. Upon adenoviral overexpression of a kinase activity-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme that determines F26P(2) level, hepatic F26P(2) levels were decreased twofold compared with those of control virus-treated mice in basal state. In addition, under hyperinsulinemic conditions, hepatic F26P(2) levels were much lower than those of the control. The decrease in F26P(2) leads to the elevation of basal and insulin-suppressed hepatic glucose production. Also, the efficiency of insulin to suppress hepatic glucose production was decreased (63.3 vs. 95.5% suppression of the control). At the molecular level, a decrease in insulin-stimulated Akt phosphorylation was consistent with hepatic insulin resistance. In the low hepatic F26P(2) states, increases in both gluconeogenesis and glycogenolysis in the liver are responsible for elevations of hepatic glucose production and thereby contribute to the development of hyperglycemia. Additionally, the increased hepatic gluconeogenesis was associated with the elevated mRNA levels of peroxisome proliferator-activated receptor-gamma coactivator-1alpha and phosphoenolpyruvate carboxykinase. This study provides the first in vivo demonstration showing that decreasing hepatic F26P(2) levels leads to increased gluconeogenesis in the liver. Taken together, the present study demonstrates that perturbation of glucose flux in the liver plays a predominant role in the development of a diabetic phenotype, as characterized by hepatic insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号