首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
An important component of the decrease in protein synthesis in muscle of diabetic animals is a fall in the ribosome content. Therefore, we have investigated the turnover of ribosomes in skeletal muscle, heart, and liver of rats during the onset of diabetes. Synthesis rates were measured by incorporation of label into the protein moieties of the ribosomes, and a dual isotope technique was used to relate ribosome synthesis to that of total tissue protein. Degradation rates were calculated as the difference between the rates of synthesis and accumulation. The loss of ribosomes from gastrocnemius muscle and heart took place mainly between the 2nd and 4th days of insulin deficiency and was brought about largely by a very pronounced increase in the degradation rate, though synthesis also fell by a substantial amount. Rates of total tissue protein synthesis decreased markedly, but the degradation rates were only slightly elevated, if at all. Thus, the effect of diabetes on muscle ribosome breakdown was quite distinct from that on degradation of total tissue protein. In liver the response of protein synthesis to diabetes was much less pronounced than in muscle, and ribosome synthesis was not affected.  相似文献   

4.
5.
To characterize the basis for the increased hepatic fatty acid synthetase activity in vitamin B-12 deprivation, the content and rates of synthesis and degradation for the enzyme were determined. Animals were in a dietary steady state on normal chow or a B-12-deprived diet; animals on the latter diet were further divided into a “supplemented” group given B-12 and those “B-12-deprived.” The B-12-deprived animals had tissue B-12 depletion. Both total and specific activity of fatty acid synthetase were increased in the B-12-deprived animals, and this was due to increased enzyme protein. Rates of synthesis and degradation were studied in each group after a pulse of 20 μCi of l-[U-14C]leucine. Radioactivity was determined in the immunoprecipitate of the purified enzyme. Relative rates of synthesis in the B-12-deprived group were increased 8.8-fold over the normal and 3.6-fold over the B-12-supplemented group. Degradation of hepatic fatty acid synthetase was 63 hr (t12) in the normal and 65 hr in the B-12-supplemented group. The t12 in the B-12-deprived group was 35 hr. Degradation rates for the soluble protein pool were not affected by B-12 deprivation. The rate constant for synthesis of hepatic fatty acid synthetase in the B-12-deprived group was 14-fold that of the normal and 6-fold that of the B-12-supplemented animals. Thus, although vitamin B-12 deprivation results in increased rate of degradation of fatty acid synthetase, enzyme synthesis is markedly increased yielding a severalfold net increase in synthetase content and activity.  相似文献   

6.
7.
Changes in RNA synthesis in liver nuclei were observed at different ages and after hypophysectomy and hormone replacement in female Sprague-Dawley rats. As determined by the incorporation of [3H]UMP into an acid-insoluble product, RNA synthesis decreased by about 75% in intact rats from 6 months to 24 months of age. This decline with age was not observed in liver nuclei from 24-month-old rats that had been hypophysectomized at 12 months and maintained on a minimal hormone-replacement therapy. Thyroid hormones and somatotropin (growth hormone) had an additive effect on RNA synthesis in liver nuclei from these hypophysectomized rats. The same hormones had no significant effect on intact, age-matched rats. With advancing age, nuclei of intact rats had an increase in the pool of free RNA polymerase and an apparent decrease in the enzyme activity bound to nuclear chromatin. There was no change in total enzyme with age. In hypophysectomized, hormone-treated rats, free RNA polymerase activity decreased and chromatin-bound activity increased. There was no difference in total nuclear RNA polymerase activity between operated or intact rats. However, the ratio of the bound to the free activity was different. These results suggest that the ability of RNA polymerase to bind to chromatin may be involved in the age-related decrease in liver nuclear RNA synthesis of intact rats.  相似文献   

8.
The rates of protein synthesis and secretion in rat liver slices showed temporal variability, as assessed by the use of [14C]leucine. The protein synthesis showed daily changes with two maxima at 13:00 and 01:00 hr and minimum at 17:00 hr. The secretion rate also varies within 24 hr showing biphasic pattern. The pattern of daily secretion rate for hydrophobic proteins differed from the pattern observed for acid proteins and glycoproteins.  相似文献   

9.
Rats were fed a protein-free diet. After 9 weeks the animals' weight decreased to about 50% of the original. The liver weight was also decreased to about half, and most interestingly the average size of the liver cells was reduced about 50%. Liver protein synthesis was approximately 75% of controls tested in an "in vitro" system. Polysomes were found disaggregated in livers of rats on protein-free diet. This was not due to a reduced content or translatability of mRNA. eIF-2 partially purified from livers of rats on protein-free diet had the same activity as that from controls. The decrease of ATP, ADP and AMP in livers of rats on protein-free diet (19%, 42% and 58% respectively) may be responsible for the decreased rate of initiation of protein synthesis. Proteolysis in liver cytosol from rats on protein-free diet was 50% higher than in controls mostly due to lysosomal proteolysis.  相似文献   

10.
Protein-degradation rates in developing rat brain were estimated from the decay in total radioactivity in proteins labelled by a single intraperitoneal injection of NaH14CO3 to 5-day-old animals. In contrast with previous reports, our results indicate that degradation rates are lower in developing than in adult brain and suggest that in brain, as has been observed in liver, adrenal gland, muscle, cultured mammalian cells and bacteria, reduced rates of protein degradation contribute to the increase in protein content under conditions of rapid growth.  相似文献   

11.
Thyrotoxicosis can induce increases in the concentrations of the cytochromes of the inner mitochondrial membrane in rat liver. The purpose of this study was to determine whether the increase in hepatic cytochrome c concentration in thyrotoxic rats is maintained by an increase in the rate of synthesis, a decrease in the rate of degradation, or a combination of the two. The turnover of cytochrome c labeled with δ-amino [14C]levulinate was measured in the livers of thyrotoxic rats that were in steady state with respect to liver cytochrome c concentration, liver weight, and body weight. Cytochrome c concentration was increased 3.4-fold in the livers of the thyrotoxic animals. The t12 of liver cytochrome c was 3.7 days in the thyrotoxic and 5.7 days in euthyroid animals. It was calculated that the 3.4-fold increase in cytochrome c concentration was maintained, in the face of a 63% increase in kd, by a 5.5-fold increase in synthesis rate.  相似文献   

12.
The effect of Triton WR-1339 on the rates of synthesis and degradation of hepatic catalase was examined. Triton WR-1339 was injected intraperitoneally into rats at a dose of 200 mg per 100 g body weight. Catalase activity decreased to about 35% of that of the control at 42-48 h after the injection and recovered to the normal level at 96 h. Other peroxisomal enzymes, D-amino acid oxidase and urate oxidase, showed similar patterns of the activities to those of catalase. During the first 48 h after the injection of Triton WR-1339, the rate of catalase synthesis (ks) fell to below a detectable value, while that of the degradation (kd) did not show any significant change. On the other hand, during the period 48-96 h after the injection, the rate of the synthesis (ks) returned to the normal level though that of the degradation (kd) decreased to about 50% of the control.  相似文献   

13.
14.
When hepatocytes suspensions obtained from whole livers of 48-h-fasted rats were incubated in Krebs-Henseleit buffer with a near-physiological concentration (1 mM) of L-[1-14C]glutamine as substrate, the apparent removal of glutamine was low, but the release of 14CO2 was much larger than the enzymatically measured removal of glutamine. This indicates that glutamine was metabolized at rates much higher than those accounted for by the apparent removal of glutamine. This also suggests that glutamine utilization was, at least in part, masked by concomitant synthesis of glutamine from endogenous substrates via glutamine synthetase. Evidence that such synthesis occurred was obtained by: (i) addition of methionine sulfoximine, an inhibitor of glutamine synthetase, which caused a large increase in the apparent removal of glutamine; and (ii) measurement of the specific radioactivity of L-[1-14C]glutamine which was shown to decrease during incubation. Addition of vasopressin (10(-7) M) led to a marked increase in glutamine removal by a dual mechanism: it accelerated flux through glutaminase, the enzyme which initiates the hepatic degradation of glutamine, and inhibited flux through glutamine synthetase.  相似文献   

15.
Cycloheximide at concentrations above 18 muM produced a 93% inhibition of total protein synthesis measured by valine incorporation in the perfused rat liver. Rates of protein degradation were estimated by perfusing livers prelabeled in vivo with L-[1-14C]valine with medium containing 15 mM L-valine. Thus labeled valine released from liver protein during perfusion was greatly diluted and reincorporation of label was minimized. Cycloheximide at 18 muM inhibited protein degradation by over 60%, after a delay of 15-20 min. Associated with these effects were dose-dependent increases in the rates of glucose and urea production. Glucose production increased 3 fold, from 0.54 +/- 0.07 in control to 1.85 +/- 0.24 mumol/min/100 g rat in cycloheximide-treated livers. Urea production increased from 0.24 +/- 0.02 to 0.62 +/- 0.06 mumol/min/100 g rat. No changes in liver glycogen or cyclic AMP content were seen. The data suggest that inhibition of protein synthesis provides an increased availability of intra-cellular amino acids and that many of these are rapidly degraded, yielding urea and glucose. This is supported by the fact that intracellular alanine levels were significantly increased following cycloheximide treatment. It is possible that the inhibition of protein degradation by cycloheximide is due to altered intra-cellular pools of amino acids or their metabolites.  相似文献   

16.
Tosyllysine chloromethyl ketone and tosylphenylalanine chloromethyl ketone in vitro are active-site specific and irreversible inhibitors of trypsin (EC 3.4.21.4) and chymotrypsin (EC. 3.4.21.1) respectively. Using rat hepatoma cells in suspension culture, both inhibitors were found to partially inhibit breakdown of prelabelled cell proteins ot amino acids, the effect being greastest in the absence of serum. Protein synthesis in rat hepatoma cells, reticulocytes and reticulyte lysates was also irreversibly inhibited by these compounds. Reduction of ATP levels with antimycin a inhibited protein degradation, but neither tosylphenylalanine chloromethyl ketone nor tosyllysine chloromethyl ketone had any effect on ATP concentration in rat hepatoma cells. These results suggest that the degradation of at least some proteins in animal cells may involve the action of serine protease(s).  相似文献   

17.
《Biochemical medicine》1981,25(1):15-25
In an attempt to define alterations in cellular metabolism associated with growth hormone deficiency, we have studied the alkaline RNAase activity in the liver subcellular fractions from normal and hypophysectomized (hypox) adult and weanling rats.The total RNAase activity of the liver and kidney subcellular fractions was determined in adult and weanling rats maintained in a fed or fasted (15-hr) state. In the adult rat, RNAase activity/g tissue increased following hypox in each of the liver subcellular fractions with the soluble fraction exhibiting an approximate two-fold increase. Part of the increased activity was real due to an increase in the specific activity of the enzyme and part was apparent due to decreased liver weight following hypophysectomy. RNAase activity of the microsomal fraction of the adult rat kidney increased following both hypox and fasting; however, the largest increase appeared secondary to hypophysectomy.In the weanling rat, RNAase activity was increased only in the nuclear and soluble fraction of the fasted hypox rat liver. The nuclear and soluble fraction exhibited a two-fold increase in activity over comparable fractions from normal and normal fasted rat liver. The increased activity was real due to increased specific activity of the enzyme and apparent due to decreased liver weight. RNAase activity of the soluble fraction of weanling rat kidney increased in the normal fasted, hypox, and hypox fasted rat. This increase in the kidney was only apparent secondary to decreased renal weight following fasting and/or hypox.Liver RNAase activity returned to normal levels in the nuclear and soluble fraction from fasted weanling hypox rat liver following treatment with hGH but not with thyroxine or estradiol.It is concluded: (a) hGH deficiency results in real and apparent alterations of liver RNAase activity, (b) alterations in RNAase activity may be important in the mechanism of action of hGH but factors such as age and fasting are important modifiers of the system.  相似文献   

18.
19.
Effect of exercise on synthesis and degradation of muscle protein.   总被引:4,自引:4,他引:4       下载免费PDF全文
Several reports have shown that amino acid utilization via oxidation and gluconeogenesis is increased during exercise. The purpose of this study was to investigate whether these changes are accompanied by alterations in protein synthesis and degradation in the muscle of exercising rats. One group of rats was made in swim for 1h and then protein synthesis and protein degradation were measured in a perfused hemicorpus preparation. Protein synthesis was decreased and protein degradation was increased in exercised rats compared with sedentary control rats. Exercise also decreased amino acid incorporation by isolated polyribosomes from muscle. Measurement of several muscle proteinase activities demonstrated that exercise had no effect on alkaline proteinase or Ca2+-activated proteinase. However, the free (unbound) cathepsin D activity was elevated in muscle of exercised rats, whereas the total activity of catepsin D was unchanged. This increase in the proportion of free cathepsin D activity suggests that lysosomal enzymes may be involved in the increased protein degradation that was observed.  相似文献   

20.
The increase in spermidine N-acetyltransferase activity in rat liver produced by carbon tetrachloride was completely prevented by simultaneous treatment with inhibitors of protein and nucleic acid synthesis suggesting that the increase results from the synthesis of new protein rather than the release of the enzyme from a cryptic inactive form. Treatment with cycloheximide 2 h after carbon tetrachloride also completely blocked the rise in spermidine N-acetyltransferase seen 4 h later. Such treatment completely prevented the fall in spermidine and rise in putrescine in the liver 6 h after carbon tetrachloride confirming the importance of the induction of spermidine N-acetyltransferase in the conversion of spermidine into putrescine. When cycloheximide was administered to rats in which spermidine N-acetyltransferase activity had been stimulated by prior treatment with carbon tetrachloride or thioacetamide, the activity was lost rapidly showing that the enzyme protein has a rapid rate of turnover. The half-life for the enzyme in thioacetamide-treated rats was 40 min, whereas the half-life for ornithine decarboxylase (which is well known to turn over very rapidly) was 27 min. In carbon tetrachloride-treated rats the rate or protein degradation was reduced and the half-life of spermidine N-acetyltransferase was 155 min and that for ornithine decarboxylase was 65 min. It appears that three of the enzymes involved in the synthesis and interconversion of putrescine and spermidine namely, ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermidine N-acetyltransferase have rapid rates of turnover and that polyamine levels are regulated by changes in the amount of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号