首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Homology between rRNA of Escherichia coli and mitochondrial DNA of maize   总被引:3,自引:0,他引:3  
C Koncz  B Sain 《FEBS letters》1980,109(1):141-144
  相似文献   

3.
4.
5.
6.
Photosystem II particles have been poised at redox potentials where the pheophytin acceptor is reduced. Illumination of these particles at 200K results in the formation of radical signal in the g?2.00 region. This is attributed to the photoreduction of another acceptor. This acceptor may function between the primary donor, P680, and pheophytin in forward electron transfer.  相似文献   

7.
The I-D transient in the chlorophyll fluorescence induction curve (Kautsky effect) is investigated in the view of recently discovered rapid changes in energy distribution between the two photosystems (Schreiber, U. and Vidaver, W., FEBS Lett., in the press). Fluorescence induction curves differ appreciably depending on whether measured at λ < 690 nm, originating in pigment system II, or at λ > 715 nm, which is in part from pigment system I. The differences occur as well in the rapid part of the induction curve (O-I-D-P) as in the slower P-S decay. Most significant changes in energy distribution are indicated in the region of the I-D dip, being induced by appropriate preillumination. The effect is studied by (a) comparing the individual fluorescence time courses at λ < 690 nm and λ > 715, (b) plotting F < 690 vs. F > 715 and (c) recording time courses of F < 690F > 715 ratios. In (a) the I and D characteristics are delayed at F > 715 relative to F < 690, which is accompanied by periods close to I and D, where the two emissions follow inverse courses. In (b) the I-D dip corresponds to a loop. And in (c) it is shown that a rapid ratio decay, reflecting increasing excitation of System I pigments, is initiated before the I-D dip. These data indicate that the I-D transient is caused by a rapid switch of energy distribution in favor of System I and the resulting stimulation of Q reoxidation via the electron transport chain. It is suggested that as with the slow fluorescence transients the rapid also can be understood as a composite of two different changes, (1) direct changes resulting from a switch in energy distribution, which are inverse for F < 690 and F > 715, and (2) indirect changes due to stimulated Q reduction or Q oxidation, which are parallel for both emissions. The rapid ratio decay, correlated to I-D, persists and is even stimulated in the presence of electron transport inhibitors. This and the speed of the phenomenon make it improbable that the rapid energy distribution changes are affected by an ion flux-induced mechanism. It is proposed that the electrical field across the thylakoid membrane is involved in the energy switch mechanism.  相似文献   

8.
9.
10.
R.C. Jennings  G. Forti 《BBA》1975,396(1):63-71
Under conditions in which the Photosystem II quencher is rapidly reduced upon illumination, either after a preillumination or following treatment with dithionite, the fluorescence-induction curve of intact spinach chloroplasts (class I type) displays a pronounced dip. This dip is probably identical with that observed after prolonged anaerobic incubation of whole algal cells (“I-D dip”). It is inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea and occurs in the presence of dithionite, sufficient to reduce the plastoquinone pool. It is influenced by far red light, methylviologen, anaerobiosis and uncouplers in a manner consistent with the interpretation that it represents a photochemical quenching of fluorescence by an electron transport component situated between the Photosystem II quencher and plastoquinone. Glutaraldehyde inhibition may indicate that protein structural changes are involved.  相似文献   

11.
When the photosystem II quinone acceptor complex has been singly reduced to the state QAQ?B, there is a 22 s half-time back-reaction of Q?B with an oxidized photosystem II donor (S2), directly measured here for the first time. From the back-reaction kinetics with and without inhibitors, kinetic and equilibrium parameters have been estimated. We suggest that the state QAQ?B of the complex is formed by a second-order reaction of vacant reaction centers in the state Q?A with plastoquinone from the pool, and discuss the physico-chemical parameters involved.  相似文献   

12.
Yung-Sing Li 《BBA》1975,376(1):180-188
Chloroplast fluorescence was excited by a weak measuring beam. A time-separated actinic light was used to modify the redox states of Q which in turn induced a change in the fluorescence yield. In salt-depleted chloroplasts, fluorescence saturated at a low actinic light intensity. CaCl2 increased the “variable” fluorescence as well as the rate of ferricyanide-Hill reaction. With Tris-washed chloroplasts, Photosystem II donor couple, phenylenediamine and ascorbate, did not increase the fluorescence to a large extent without the presence of CaCl2. It is suggested that salt-depletion inactivates the Photosystem II reaction center of chloroplasts.  相似文献   

13.
Chen Y  Xu DQ 《The New phytologist》2006,169(4):789-798
Plants often regulate the amount and size of light-harvesting antenna (LHCII) to maximize photosynthesis at low light and avoid photodamage at high light. Gas exchange, 77 K chlorophyll fluorescence, photosystem II (PSII) electron transport as well as LHCII protein were measured in leaves irradiated at different light intensities. After irradiance transition from saturating to limiting one leaf photosynthetic rate in some species such as soybean and rice declined first to a low level, then increased slowly to a stable value (V pattern), while in other species such as wheat and pumpkin it dropped immediately to a stable value (L pattern). Saturating pre-irradiation led to significant declines of both 77 K fluorescence parameter F685/F735 and light-limited PSII electron transport rate in soybean but not in wheat leaves, indicating that some LHCIIs dissociate from PSII in soybean but not in wheat leaves. The L pattern of LHCII-decreased rice mutant and the V pattern of its wild type demonstrate that the V pattern is linked to dissociation/reassociation of some LHCIIs from/to PSII.  相似文献   

14.
A prolonged (20 h) dark incubation of Chlorella pyrenoidosa algae at 37°C resulted in a twofold rise of the slowly rising phase (10–15 min), sF v, in the kinetics of variable chlorophyll fluorescence, F v (F v = F mF 0) in diuron-treated cells. This effect suggests the accumulation of inactive photosystem II (PSII) complexes with low efficiency of primary quinone acceptor of electron of PSII (QA) reduction. The presence of methylamine (MA), a thylakoid membrane uncoupler, or N, N-dicyclohexylcarbodiimide, an inhibitor of ATPase, precluded the accumulation of inactive PSII complexes. When salicylhydroxamate promoted the reduction of the plastoquinone (PQ) pool, exogenous ATP accelerated the accumulation of inactive complexes. Dark PQ oxidation in the presence of nonmetabolized glucose analog, 2-deoxy-D-glucose, lowered the content of inactive PSII complexes, and NaF, an inhibitor of chloroplast phosphatases, retarded this process. These data are considered as evidence for a mechanism regulating the content of inactive PSII complexes in the process of redox-dependent phosphorylation of D1- and/or D2-proteins of PSII.  相似文献   

15.
16.
17.
The photosystem two (PSII) complex found in oxygenic photosynthetic organisms is susceptible to damage by UV-B irradiation and undergoes repair in vivo to maintain activity. Until now there has been little information on the identity of the enzymes involved in repair. In the present study we have investigated the involvement of the FtsH and Deg protease families in the degradation of UV-B-damaged PSII reaction center subunits, D1 and D2, in the cyanobacterium Synechocystis 6803. PSII activity in a ΔFtsH (slr0228) strain, with an inactivated slr0228 gene, showed increased sensitivity to UV-B radiation and impaired recovery of activity in visible light after UV-B exposure. In contrast, in ΔDeg-G cells, in which all the three deg genes were inactivated, the damage and recovery kinetics were the same as in the WT. Immunoblotting showed that the loss of both the D1 and D2 proteins was retarded in ΔFtsH (slr0228) during UV-B exposure, and the extent of their restoration during the recovery period was decreased relative to the WT. However, in the ΔDeg-G cells the damage and recovery kinetics of D1 and D2 were the same as in the WT. These data demonstrate a key role of FtsH (slr0228), but not the Deg proteases, for the repair of PS II during and following UV-B radiation at the step of degrading both of the UV-B damaged D1 and D2 reaction center subunits.  相似文献   

18.
A three-dimensional image of the spinach photosystem II core complex composed of CP47, D1, D2, cytochromeb-559, andpsbI gene product was reconstructed at 20-Å resolution from the two-dimensional crystals negatively stained with phosphotungstate. Confirming the previous proposal, the crystal had ap22121symmetry. One PSII core complex was measured to be 80 × 80 Å in the membrane plane and 88 Å normal to it. The mass distribution was asymmetric about the lipid bilayer, consistent with predictions from the amino acid sequences. The lumenal mass consisted of three domains forming a characteristic triangular platform with another domain on top of it. Three stromal domains were smaller and linearly arranged. Due to strong stain exclusion in the hydrophobic core part of the lipid bilayer, the transmembrane region appeared to be imaged with a reversed contrast. Inverting the contrast resulted in a reasonable density distribution for that part. Thus, though the information on the transmembrane region is limited, the domain structure of the PSII core complex was revealed and allowed us to propose a model for the arrangement of subunits in the PSII core complex.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号