首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological soil crusts dominated by drought-tolerant mosses are commonly found through arid and semiarid steppe communities of the northern Great Basin of North America. We conducted growth chamber experiments to investigate the effects of these crusts on the germination of four grasses: Festuca idahoensis, Festuca ovina, Elymus wawawaiensis and Bromus tectorum. For each of these species, we recorded germination time courses on bare soil and two types of biological soil crusts; one composed predominantly of the tall moss Tortula ruralis and the other dominated by the short moss Bryum argenteum. On the short-moss crust, the final germination percentage was about half of that on bare soil. Also, the mean germination time was 4 days longer on short-mosses than on bare soil. In contrast to the short-moss crust, the tall-moss crust did not reduce the final germination percentage but increased the mean germination time. Similar results were observed in the four grasses studied. To investigate the mechanism by which moss crusts affected germination, we analyzed the water status of seeds on bare soil and moss crusts. Six days after seeding, the water content of seeds on bare soil was approximately twice that of seeds on tall- or short-moss crust. Analysis of the time course of changes in seed weight and water potential in Bromus tectorum revealed that overtime seeds on tall mosses reached higher water content than those on short mosses. The increase in the water content of seeds on tall mosses occurred as the seeds gradually fell through the moss canopy. Taken together, our results indicate that biological soil crusts with distinct structural characteristics can have different effects on seed germination. Furthermore, this study revealed that a biological soil crust dominated by short mosses had a negative effect on seed water status and significantly reduced seed germination.  相似文献   

2.
Biological soil crusts can affect seed germination and seedling establishment. We have investigated the effect of biological soil crusts on seed water status as a potential mechanism affecting seed germination. The seed water potential of two annual grasses, one exotic Bromus tectorum L. and another native Vulpia microstachys Nutt., were analyzed after placing the seeds on bare soil, on a crust that contains various lichens and mosses (mixed crust), or on a crust dominated by the crustose lichen Diploschistes muscorum (Scop.) R. Sant. (Diploschistes crust). Seed water potential and germination were similar on the bare soil and the mixed crust, except for the initial germination of V. microstachys, which was higher on the mixed crust than on the bare soil. For the two grasses studied, seed water potential was significantly higher on the bare soil and mixed crust than on the Diploschistes crust. These differences in water potential correlated with differences in germination, which was much lower on the lichen crust. Experiments were conducted under two watering regimens. Increasing the frequency of watering amplified the differences in seed water potential and germination between the Diploschistes crust and the other two surfaces. For a particular watering regimen, the bare soil, mixed crust, and Diploschistes crust received the same amount of water, but they reached significantly different water potentials. Throughout the experiments, the water potential of the soil and mixed crust remained above −0.6 MPa, while there was a marked decline in the water potential of the Diploschistes surface to about −4 MPa. To ascertain that water was the major factor limiting germination on the Diploschistes crust, we conducted germination tests in an environment with 100% relative humidity. Under these conditions, germination on the Diploschistes crust was similar to that on the bare soil. However, the seeds that germinated on the Diploschistes crust did not penetrate this surface and approximately 60% of their root tips became necrotic. Our results indicate that the presence of D. muscorum can inhibit seedling establishment by two mechanisms: a reduction in seed water absorption and an increase in root tip mortality.  相似文献   

3.
Summary The effect of tree canopy, understory, herbivores, and litter depth on seedling establishment, survival, and reproduction of the alien grass, Bromus tectorum (cheatgrass), was examined in a series of experiments in four forest habitat types in western North America. Higher recruitment, survival, and reproduction on clearcuts, which would be expected if the overstory alone is limiting the distribution of cheatgrass in forests, were not observed. Removing the understory in an otherwise undisturbed Pinus ponderosa forest did, however, increase the emergence of B. tectorum, but plants in these experimentally-created openings were more vulnerable to grazing by small mammals. In contrast, removing the sparse understory in an Abies forest neither enhanced recruitment nor increased the incidence of grazing of B. tectorum seedlings. Regardless of the forest habitat, most grazed plants died before maturity; even fewer grazed plants produced seeds. Litter depth influenced both recruitment and biomass production: both the rate of germination and the size of resultant seedlings were lower on thick litter (6 cm) compared to results on thin litter (1.5 cm). In the more open Pinus ponderosa and Pseudotsuga menziesii forests, cheatgrass colonization may often occur in openings in the understory alone. Colonization in the more shady A. grandis and Thuja plicata forests is unlikely, however, unless the opening extends through both the understory and the overstory. As a result, cheatgrass is unlikely to increase in any of these forests unless the scale and incidence of disturbance increases substantially.  相似文献   

4.
Many studies have shown that soil disturbance facilitates establishment of invasive, non-native plant species, and a number of mechanisms have been isolated that contribute to the process. To our knowledge no studies have isolated the role of altered soil compaction, a likely correlate of many types of soil disturbance, in facilitating invasion. To address this, we measured the response of seeded non-native and native plant species to four levels of soil compaction in mesocosms placed in an abandoned agricultural field in the Methow Valley, Washington, USA. Soil compaction levels reflected the range of resistance to penetration (0.1–3.0 kg cm−2) measured on disturbed soils throughout the study system prior to the experiment. Percent cover of non-native species, namely Bromus tectorum and Centaurea diffusa, decreased by 34% from the least to the most compacted treatments, whereas percent cover of native species, mostly Pseudoroegneria spicata and Lupinus spp., did not respond to compaction treatments. Experimental results were supported by a survey of soil penetration resistance and percent cover by species in 18 abandoned agricultural fields. Percent cover of B. tectorum was negatively related to soil compaction levels, whereas none of the native species showed any response to soil compaction. These results highlight a potentially important, though overlooked, aspect of soil disturbance that may contribute to subsequent non-native plant establishment.  相似文献   

5.
Meiners  S.J.  Handel  S.N.  Pickett  S.T.A. 《Plant Ecology》2000,151(2):161-170
As the density and species composition of insects may change in relation to distance from the forest edge, the role of herbivory in tree establishment may also change across edges. To determine the importance of insect herbivory in tree establishment, insect densities were experimentally altered at different distances from the forest edge. Plots were established at three distances from the edge, with plots located in forest, edge, and field habitats. In half of each plot, insect densities were reduced by insecticide application. Seeds of two tree species, Acer rubrum and Fraxinus americana, were planted into each plot in 1995. The experiment was repeated in 1996 with the addition of Quercus palustris and Quercus rubra.Distance from the forest edge was the most important factor in determining seedling emergence and mortality. Overall seedling performance increased from field to edge to woods, although responses varied among species. In 1995, a drought year, insect removal increased emergence and decreased mortality of tree seedlings. In 1996, a year with normal precipitation, insect removal had much less effect on A. rubrum and F. americana. For the two Quercus species, mortality was reduced by insect removal. The tree species differed in their susceptibility to insect herbivory, with Acer rubrum the most susceptible and Fraxinus americana the least. Herbivory by insects was shown to have the potential to affect both the composition and spatial pattern of tree invasions. Herbivore importance differed greatly between the two years of the study, making the interaction between insects and tree seedlings variable both in space and time.  相似文献   

6.
Adults of the rice stink bug, Oebalus pugnax (F.), preferred panicles of vasey grass, Paspalum urvillei Steud., over those of 11 species of other grasses and one species of sedge (Cyperus) associated with cultivated rice, Oryza sativa (L.). The number of feeding adults increased approximately 2 times from 1 h post-infestation (PI) to 6 h PI. The number of feeding females was greater than males at 1 h PI but no different at 6 h PI. Both sexes fed significantly (P<0.05) more on O. sativa panicles than on P. urvillei panicles at 6 h PI. Both sexes also fed significantly (P<0.05) more on 28 and 21 cm long O. sativa panicles than on 7 cm long panicles, but no such differences existed in feeding among P. urvillei panicles.
Résumé Les adultes d'Oebalus pugnax F. ont préféré les panicules de Paspalum urivillei Stend à celles de 11 autres Graminées et 1 Cypéracée associées au riz cultivé, Oryza sativa L. Le nombre d'adultes s'alimentant a cru environ 2 fois de la lère (1P1) à la 6ème (6P1) heure ayant suivi l'infestation. Le nombre de femelles s'alimentant était supérieur à celui des mâles 1 heure après (1P1), mais ne présentait pas de différence 6 h après l'infestation (6P1). Les 2 sexes s'alimentaient significativement plus (P< 0.05) sur les panicules d'O. sativa que sur celles de P. urvillei 6 heures après l'infestation (6P1). Les 2 sexes se sont alimentés significativement plus (P< 0,05) sur des panicules d'O. sativa de 28 et 21 cm que sur ceux de 7 cm, mais aucune différence n'était observée dans l'alimentation sur les panicules de P. urvillei.
  相似文献   

7.
水分是荒漠植物生长最主要的限制因子,藓类结皮作为荒漠土壤表层重要覆被物,对土壤水分蒸发入渗具有重要影响。研究表明,在全球气候变化背景下,不确定的降水格局变化导致结皮层藓类植物出现集群死亡现象,但这一过程对荒漠地表土壤水分蒸发与入渗过程的影响及其机理尚不清楚。以古尔班通古特沙漠齿肋赤藓结皮为研究对象,利用便携式渗透计和蒸发仪,研究了结皮层藓类植物死亡对土壤水分蒸发与入渗的影响。结果表明,与裸沙相比,藓类结皮的存在显著抑制了水分入渗,而藓类植物死亡的结皮层抑制作用最大,其初渗速率、稳渗速率和累积入渗量分别是活藓类结皮的39.89%、85.91%及64.48%,仅为裸沙的5.96%、13.13%及20.42%。在水分蒸发初期,裸沙的水分蒸发速率明显高于活藓类结皮和藓类植物死亡的结皮层,但藓类植物死亡的结皮层维持相对稳定的蒸发速率的时间长于裸沙和活藓类结皮,这也导致最终累计蒸发量以藓类植物死亡的结皮层最高、裸沙最低。可见,荒漠生物土壤结皮中藓类植物死亡会明显减少土壤水分入渗、增大水分蒸发,进一步影响荒漠表层土壤水分格局,从而影响生物土壤结皮与维管植物的水分利用关系。  相似文献   

8.
Although the tussock growth form of caespitose graminoids is widespread, the effect of this growth form on light interception and carbon gain of tillers has received little attention. Daily incident photosynthetic photon flux density (PFDinc) and carbon gain in monospecific stands of tussock grasses were compared with those of a hypothetical distribution with the equivalent tiller density per total ground area, but evenly distributed rather than clumped in tussocks. This was computed for two tussock grasses Pseudoroegneria spicata (Pursh) A. Löve (bluebunch wheatgrass) and Agropyron desertorum (Fisch, ex Link) Schult. (creasted wheatgrass) at different plant densities. Daily PFDinc and net photosynthesis (A) were greater if tillers were distributed uniformly rather than clumped in tussocks, except when the density of tussocks was so great as to approach a uniform canopy. When tussock density per ground area was low, much of the difference between tussock and uniform tiller densities in PFDinc and A was due to shading within the tussocks; up to 50–60% of the potential carbon gain was lost in A. desertorum due to shading within tussocks. In a matrix of tussocks, the light field for establishing seedlings was very heterogeneous; potential A ranged from 7 to 96% relative to an isolated seedling. The mean of daily PFDinc and A for seedlings in a tussock stand were nearly identical to the values in corresponding stands of uniform tiller distributions. It is hypothesized that the loss of A resulting from clumping tillers into tussocks is offset by benefits of protecting sequestered belowground resources from invasion by seedlings of competitors.  相似文献   

9.
Within the oak woodlands of California there is often a distinct shift in the botanical composition between the open grassland and the herbaceous understory beneath oak canopy. Botanical sampling at two woodland sites indicated that the annual grass Bromus diandrus was dominant under deciduous blue oak canopy, while a congener, Bromus hordeaceus, was dominant in open grassland. We examined the relative importance of congeneric competition and edaphic factors in creating these differences in species distribution in two separate field experiments that manipulated both congeneric and intraspecific competition, as well as soil type. We used the demographic measure of relative reproductive rate as an index of population growth. In general, demographic performance correctly predicted the distribution of the two annual grasses in the field. Our results indicate that reduced abundance of B. hordeaceus under canopy reflects the negative effects of competition with B. diandrus. In contrast, B. diandrus is little affected by competition from B. hordeaceus. The reduced abundance of B. diandrus in open grassland may result, in part, from its inability to adapt as well as B. hordeaceus to lower nutrient availability in soils of the open grassland.  相似文献   

10.
Seedborne systemic endophytic fungi of grasses are thought to be plant mutualists, because they have been shown to improve their host’s resistance against biotic and abiotic stresses. The interactions in plant–endophyte associations vary from mutualistic to parasitic with environmental conditions and the genotypes of interacting species. The possible pros and cons of endophytic fungi are expected to be most evident during the seedling establishment, where host fitness is most directly affected. If this holds true, endophytes may play a focal role in local adaptation of hosts to different environments. We examined if endophyte-infected and uninfected seeds and seedlings of two native grass species, Festuca rubra and F. ovina, differ in seed germination and seedling growth rates under greenhouse conditions. The germination of F. rubra seeds was also studied in the field. This is the first time that the effects of Epichloë endophyte on seedling establishment of fine fescues from natural populations have been experimentally evaluated. Mother plant (seed family) had a marked effect on many response variables in both grass species. Length and mean biomass of tillers of endophyte-infected (E+) F. ovina seedlings were lower, but root:shoot ratios were higher than in endophyte-free (E?) seedlings. In F. rubra, the effects of the endophyte were dependent on the habitat where the seeds were collected. The E+ seeds from river banks germinated faster than E+ seeds from meadows, and E+ seedlings from the river banks produced fewer but taller and heavier tillers than the other seedlings. Our data suggest that the effects of the endophyte infection on the seedling stage of fine fescues are dependent the species of grass, host genetic background and mother plant habitat. The germination strategy and growth form of E+ red fescue seedlings from river banks may be beneficial to surviving in the harsh conditions of that habitat.  相似文献   

11.
The effects of the herbicide tebuthiuron (0.36, 0.6, and 1.01 kg/ha in pellet form) on nontarget organisms, vesicular-arbuscular mycorrhizal fungi, were observed in sagebrush semidesert in central Utah. Only the highest level of tebuthiuron application showed any significant effects on mycorrhizal fungi compared to the untreated control. The introduced annual Bromus tectorum L. had both a reduced percent mycorrhizal root infection and reduced spore density in its rhizosphere with the highest herbicide level. The herbicide did not significantly affect mycorrhizal root infection of Sitanion hystrix, a short-lived perennial grass, at any level of application. There was no significant effect of any level of tebuthiuron on germination of mycorrhizal spores collected 6 months after herbicide application.Published with the approval of the Director, Utah Agricultural Experiment Station, as Journal Paper No. 3777  相似文献   

12.
Summary The effect of full sunlight, 60%, or 90% attenuated light on photosynthetic rate, growth, leaf morphology, dry weight allocation patterns, phenology, and tolerance to clipping was examined in the glasshouse for steppe populations of the introduced grass, Bromus tectorum. The net photosynthetic response to light for plants grown in shade was comparable to responses for plants grown in full sunlight. Plants grown in full sunlight produced more biomass, tillers and leaves, and allocated a larger proportion of their total production to roots than plants grown in shade. The accumulation of root and shoot biomass over the first two months of seedling growth was primarily responsible for the larger size at harvest of plants grown in full sunlight. Plants grown under 60% and 90% shade flowered an average of 2 and 6 weeks later, respectively, than plants grown in full sunlight. Regrowth after clipping was greater for plants grown in full sunlight compared to those grown in shade. Even a one-time clipping delayed flowering and seed maturation; the older the individual when leaf area was removed, the greater the delay in its phenology. Repeated removal of leaf area was more frequently fatal for plants in shade than in full sunlight. For plants originally grown in full sunlight, regrowth in the dark was greater than for shaded plants and was more closely correlated to non-flowering tiller number than to plant size. This correlation suggests that etiolated regrowth is more likely regulated by the number of functional meristems than by differences in the size of carbohydrate pools. Thus, shading reduces the rate of growth, number of tillers, and ability to replace leaf area lost to herbivory for B. tectorum. These responses, in turn, intensify the effect of competition and defoliation for this grass in forests. B. tectorum is largely restricted to forest gaps at least in part because of its inability to acclimate photosynthetically, the influence of shade on resource allocation, and the role of herbivory in exacerbating these effects.  相似文献   

13.
Summary Previous studies have shown that the shrub, Baccharis pilularis spp. consanguinea, invades annual grasslands in the San Francisco Bay region in a sporadic manner. Invasion was shown to be positively correlated with the amount of rainfall received in the spring. Here we show that, although Baccharis seeds are dispersed near the beginning of the winter rainy season, seedling root growth is extremely slow until spring. At this time, cessation of the winter rains and transpiration by the grassland annuals results in drying of the upper soil profile. We conclude that establishment of Baccharis seedlings at our study site usually fails because seedling roots cannot reach depths of permanently moist soil, below the depth of the grass roots, before this soil drought occurs. The continuation of rains into the warmer spring months provides a window of time when favorable temperatures and adequate soil moisture allow shrubs to establish.  相似文献   

14.
Influence of short-term water stress on plant growth and leaf gas exchange was studied simultaneously in a growth chamber experiment using two annual grass species differing in photosynthetic pathway type, plant architecture and phenology:Triticum aestivum L. cv. Katya-A-1 (C3, a drought resistant wheat cultivar of erect growth) andTragus racemosus (L.) All. (C4, a prostrate weed of warm semiarid areas). At the leaf level, gas exchange rates declined with decreasing soil water potential for both species in such a way that instantaneous photosynthetic water use efficiency (PWUE, mmol CO2 assimilated per mol H2O transpired) increased. At adequate water supply, the C4 grass showed much lower stomatal conductance and higher PWUE than the C3 species, but this difference disappeared at severe water stress when leaf gas exchange rates were similarly reduced for both species. However, by using soil water more sparingly, the C4 species was able to assimilate under non-stressful conditions for a longer time than the C3 wheat did. At the whole-plant level, decreasing water availability substantially reduced the relative growth rate (RGR) ofT. aestivum, while biomass partitioning changed in favour of root growth, so that the plant could exploit the limiting water resource more efficiently. The change in partitioning preceded the overall reduction of RGR and it was associated with increased biomass allocation to roots and less to leaves, as well as with a decrease in specific leaf area. Water saving byT. racemosus sufficiently postponed water stress effects on plant growth occurring only as a moderate reduction in leaf area enlargement. For unstressed vegetative plants, relative growth rate of the C4 T. racemosus was only slightly higher than that of the C3 T. aestivum, though it was achieved at a much lower water cost. The lack of difference in RGR was probably due to growth conditions being relatively suboptimal for the C4 plant and also to a relatively large investment in stem tissues by the C4 T. racemosus. Only 10% of the plant biomass was allocated to roots in the C4 species while this was more than 30% for the C3 wheat cultivar. These results emphasize the importance of water saving and high WUE of C4 plants in maintaining growth under moderate water stress in comparison with C3 species.  相似文献   

15.
为了探清干旱荒漠区生物土壤结皮对易漂移性植物种子定居影响及作用机制,以巴丹吉林沙漠南缘结皮前期以及藻类、地衣、藓类阶段结皮为场所,通过人工补充种子与野外长期监测的方法对红砂种子在生物结皮上流失动态、种子宿存微区特征以及种子宿存量与微区面积间的关系等进行研究。结果表明:(1)生物土壤结皮发育过程中,地表枯落物、微坑、龟裂缝、长藓的面积百分比均发生了显著变化,即:枯落物呈现出增大(藻类阶段)—稳定不变(地衣阶段)—减小(藓类阶段)的趋势,微坑、龟裂缝均先增大后减小(峰值在地衣阶段),长藓持续增大。(2)4个阶段的种子流失速度或定居率两两之间存在显著差异,流失速度大小依次为:结皮前期>藻类阶段>藓类阶段>地衣阶段,定居率大小为:地衣阶段>藓类阶段>藻类阶段>结皮前期。(3)生物土壤结皮上定居的种子仅宿存于枯落物、微坑、龟裂缝、长藓上,这4种微区上定居种子数与其面积之间均存在显著正相关关系,其关系均可用二次项y=ax2+bx+c(a≠0)表示,等面积微区内的定居种子数大小依次为:龟裂缝>枯落物>微坑>长藓。因此认为,生...  相似文献   

16.
Prater MR  Obrist D  Arnone JA  DeLucia EH 《Oecologia》2006,146(4):595-607
Invasion of non-native annuals across the Intermountain West is causing a widespread transition from perennial sagebrush communities to fire-prone annual herbaceous communities and grasslands. To determine how this invasion affects ecosystem function, carbon and water fluxes were quantified in three, paired sagebrush and adjacent postfire communities in the northern Great Basin using a 1-m3 gas exchange chamber. Most of the plant cover in the postfire communities was invasive species including Bromus tectorum L., Agropyron cristatum (L.) Gaertn and Sisymbrium altissimum L. Instantaneous morning net carbon exchange (NCE) and evapotranspiration (ET) in native shrub plots were greater than either intershrub or postfire plots. Native sagebrush communities were net carbon sinks (mean NCE 0.2–4.3 μmol m−2 s−1) throughout the growing season. The magnitude and seasonal variation of NCE in the postfire communities were controlled by the dominant species and availability of soil moisture. Net C exchange in postfire communities dominated by perennial bunchgrasses was similar to sagebrush. However, communities dominated by annuals (cheatgrass and mustard) had significantly lower NCE than sagebrush and became net sources of carbon to the atmosphere (NCE declined to −0.5 μmol m−2 s−1) with increased severity of the summer drought. Differences in the patterns of ET led to lower surface soil moisture content and increased soil temperatures during summer in the cheatgrass-dominated community compared to the adjacent sagebrush community. Intensive measurements at one site revealed that temporal and spatial patterns of NCE and ET were correlated most closely with changes in leaf area in each community. By altering the patterns of carbon and water exchange, conversion of native sagebrush to postfire invasive communities may disrupt surface-atmosphere exchange and degrade the carbon storage capacity of these systems.  相似文献   

17.
为了探讨干旱沙区生物土壤结皮发育对红砂形态及干物质积累的影响,以巴丹吉林沙漠南缘已发育不同类型生物土壤结皮并有红砂种群成功定居的区域为研究场所,通过野外监测与室内测定的方法对藻类-地衣、地衣、地衣-藓类结皮上的红砂(当年生、幼株、成株)形态特征及生物量进行了调查研究。结果表明:(1)藻类-地衣结皮演替到地衣-藓类结皮的过程中,当年生红砂形态差异不显著,但5 a以上植株基部分枝长、树冠/侧冠投影面积、主根长均显著减小;同时,地衣-藓类结皮的3-5 a植株基部分枝数明显减少,且5 a以上植株明显矮化。(2)生物土壤结皮发育不仅降低了红砂幼株或成株生物量积累能力,还减小了植株根冠比,且降低/减小程度随结皮演替或株龄的增大逐渐增大。(3)红砂形态、生物量指标与物理或藻类结皮面积百分比呈极显著正相关关系,与藓类结皮面积百分比呈极显著的负相关关系。因此认为,生物土壤结皮的演替导致土壤关键生态因子(如土壤水分)发生变化,进而影响红砂植株生长发育能力,从而使得不同发育阶段结皮上的同龄红砂形态特征及生物量存在差异性。  相似文献   

18.
Summary The moment skewness coefficient, coefficient of variation and Gini coefficient are contrasted as statistical measures of inequality among members of plant populations. Constructed examples, real data examples, and distributional considerations are used to illustrate pertinent properties of these statistics to assess inequality. All three statistics possess some undesirable properties but these properties are shown to be often unimportant with real data. If the underlying distribution of the variable follows the often assumed two-parameter lognormal model, it is shown that all three statistics are likely to be highly and positively correlated. In contrast, for distributions which are not two-parameter lognormally distributed, and when the distribution is not concentrated near zero, the coefficient of variation and Gini coefficient, which are sensitive to small shifts in the mean, are often of little practical use in ordering the equality of populations. The coefficent of variation is more sensitive to individuals in the right-hand tail of a distribution than is the Gini coefficient. Therefore, the coefficient of variation may often be recommended over the Gini coefficient if a measure of relative precision is selected to assess inequality. The skewness coeficient is suggested when the distribution is either three-parameter lognormally distributed (or close to such), or when a measure of relative precision is not indicated.Scientific Paper no 7830. College of Agriculture and Home Economics Research Center, Washington State University  相似文献   

19.
D. C. Hartnett 《Oecologia》1989,80(3):414-420
Summary Responses to defoliation were studied in two tallgrass prairie perennials (Andropogon gerardii and Panicum virgatum) established from seed at three densities. P. virgatum was also grown from transplanted rhizomes of established clones. Plants of both species displayed a continuum of responses to defoliation, from large reductions in biomass, tillering and seed production to significant increases in one or more performance measures. In crowded populations, defoliation shifted plants into subordinate positions within the competitive hierarchy. Plants competing intraspecifically and those that were initially small suffered more from defoliation than either plants grown at low density or those that were larger than their neighbors. At the highest plant density, the effects of defoliation or initial plant size were overshadowed by the effects of crowding. When defoliated and grown at similar densities, P. virgatum and A. gerardii grown from seed showed large reductions in biomass, seed production, and new rhizome production, but established P. virgatum ramets grown from rhizomes showed increases in these performance measures. Thus, herbivory may be particularly detrimental to P. virgatum during juvenile stages before perennating organs have developed. Overcompensation of P. virgatum clones in response to defoliation only occurred if all ramets within the clone were defoliated. In clones containing both defoliated and undamaged ramets, there were no differences in their performance, suggesting that genets are capable of integrating the effects of differential defoliation among shoots. Defoliated P. virgatum clones allocated a smaller fraction of their total biomass to new rhizomes, indicating that the short-term regrowth response following defoliation may incur a longer-term cost associated with gradual reduction in biomass of the perennating organs and reduced genet success.  相似文献   

20.
李云飞  都军  张雪  谢婷  李小军 《生态学报》2020,40(5):1580-1589
生物土壤结皮(BSCs)是荒漠生态系统的重要组成部分,是该区土壤碳循环及碳平衡的关键影响因素。研究了腾格里沙漠东南缘不同类型生物土壤结皮覆盖下土壤碳矿化过程及其对温度(10℃、25℃和35℃)和水分(土壤含水量10%和25%)变化响应特征,分析了土壤碳矿化过程与土壤理化性质的关系。结果表明:(1)结皮的形成和发育显著影响土壤有机碳矿化过程,藻类、地衣和藓类结皮覆盖的土壤碳矿化速率和CO2-C累积释放量均显著高于去除结皮的土壤,不同类型BSCs覆盖土壤和去除结皮土壤之间均表现为藓类结皮土壤>地衣结皮土壤>藻类结皮。(2)含结皮层土壤的平均和最大矿化速率均随温度升高和水分增加而逐渐增大,有结皮覆盖的土壤和去除结皮的土壤对温度和水分变化的响应规律相同。(3)有结皮土壤和去除结皮土壤碳矿化速率的温度敏感性(Q10)与结皮类型密切相关,均表现为藓类结皮>地衣结皮>藻类结皮。结果表明生物土壤结皮由以藻类为主向以藓类为主的演变进一步促进了土壤碳矿化过程,结皮对土壤碳循环的调控作用受水热等环境因子的共同影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号