共查询到20条相似文献,搜索用时 15 毫秒
1.
Capacitative Ca2+ entry exists in rat glioma C6 cells; however, how the information of depletion of Ca2+ in intracellular stores transmits to the plasma membrane is unknown. In the present study, we examined whether Ca2+ influx factor (CIF) causes capacitative Ca2+ entry in C6 cells. CIF was extracted from non-treated (Non-CIF), bombesin-treated (BBS-CIF) and thapsigargin-treated (TG-CIF) C6 cells by a reverse-phase silica cartridge. The addition of BBS-CIF and TG-CIF gradually increased cytoplasmic Ca2+ concentration ([Ca2+]i) but Non-CIF did not increase [Ca2+]i. Neither BBS-CIF nor TG-CIF elevated [Ca2+]i in the absence of extracellular Ca2+. Gd3+ inhibited the increase in [Ca2+]i induced by BBS-CIF and TG-CIF. Genistein abolished an elevation of [Ca2+]i induced by BBS-CIF and TG-CIF. BBS-CIF and TG-CIF did not increase inositol 1,4,5-trisphosphate accumulation. The results suggest that capacitative Ca2+ entry is caused by CIF in rat glioma C6 cells. 相似文献
2.
3.
Ca2+ ionophores affect phosphoinositide metabolism differently than thyrotropin-releasing hormone in GH3 pituitary cells 总被引:4,自引:0,他引:4
Thyrotropin-releasing hormone (TRH) stimulates hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) by a phospholipase C (or phosphodiesterase) and elevates cytoplasmic-free Ca2+ concentration ([Ca2+]i) in GH3 pituitary cells. To explore whether hydrolysis of PtdIns-4,5-P2 is secondary to the elevation of [Ca2+]i, we studied the effects of Ca2+ ionophores, A23187 and ionomycin. In cells prelabeled with [3H]myoinositol, A23187 caused a rapid decrease in the levels of [3H]PtdIns-4,5-P2, [3H]PtdIns-4-P, and [3H]PtdIns to 88 +/- 2%, 88 +/- 4%, and 86 +/- 1% of control, respectively, and increased [3H]inositol bisphosphate to 200 +/- 20% at 0.5 min. There was no increase in [3H] Ins-P3; the lack of a measurable increase in [3H]Ins-P3 was not due to its rapid dephosphorylation. In cells prelabeled with [14C]stearic acid, A23187 increased [14C]diacylglycerol and [14C]phosphatidic acid to 166 +/- 20% and 174 +/- 17% of control, respectively. In cells prelabeled with [3H]arachidonic acid, A23187, but not TRH, increased unesterified [3H]arachidonic acid to 166 +/- 8% of control. Similar effects were observed with ionomycin. Hence, Ca2+ ionophores stimulate phosphodiesteratic hydrolysis of PtdIns-4-P but not of PtdIns-4,5-P2 and elevate the level of unesterified arachidonic acid in GH3 cells. These data demonstrate that Ca2+ ionophores affect phosphoinositide metabolism differently than TRH and suggest that TRH stimulation of PtdIns-4,5-P2 hydrolysis is not secondary to the elevation of [Ca2+]i. 相似文献
4.
Malík R Vlasicová K Sedo A 《Physiological research / Academia Scientiarum Bohemoslovaca》2002,51(1):73-78
There are conflicting results concerning the receptor subtype(s) involved in calcium-mediated endothelin signaling in the glial cells. In order to elucidate the role of endothelin A and B receptors in these processes, we have studied the effect of a complex spectrum of endothelin receptor ligands on intracellular calcium concentration changes in proliferating and differentiated C6 rat glioma cells. Cell differentiation was induced by dibutyryl-cAMP and assessed by the glial fibrillar acidic protein content. Intracellular calcium changes were measured in cell suspensions using fluorescent probe Fura-2. The specific endothelin B receptor agonists sarafotoxin S6c and IRL-1620 did not influence the intracellular calcium concentration. However, calcium changes induced by endothelin-1 and especially by endothelin-3 after the pretreatment of cells with one of these endothelin B receptor specific agonists were significantly enhanced even above the values attained by the highest effective endothelin concentrations alone. Such endothelin B-receptor ligand-induced sensitization of calcium signaling was not observed in differentiated C6 cells. Moreover, endothelin-induced calcium oscillations in differentiated C6 cells were less inhibited by BQ-123 and BQ-788 than in their proliferating counterparts. In conclusion, the specific activation of endothelin B receptor in C6 rat glioma cells does not affect intracellular calcium per se, but probably does so through interaction with the endothelin A receptor. The pattern and/or functional parameters of endothelin receptors in C6 rat glioma cells are modified by cell differentiation. 相似文献
5.
We had previously shown that hydrocortisone (Hy), a glucocorticoid hormone, regulates the expression of the transformed phenotype of rat C6 glioma cells. The hormone reversibly renders C6 cells dependent on anchorage and high Ca2+ concentration for growth. We had also isolated Hy-resistant C6 variants in agarose suspension cultures. Here we report that Hy-resistant variants selected in high (1.8mM) Ca2+ medium become growth-arrested in low (30 microM) Ca2+ medium upon hormone treatment. We conclude that Hy-induced anchorage dependence and Hy-induced high Ca2+ requirement for growth of C6 glioma cells, are two independent phenotypes. 相似文献
6.
Oishi T Konoki K Tamate R Torikai K Hasegawa F Matsumori N Murata M 《Bioorganic & medicinal chemistry letters》2012,22(11):3619-3622
Maitotoxin (MTX) is a ladder-shaped polyether produced by the epiphytic dinoflagellate Gambierdiscus toxicus. It is known to elicit potent toxicity against mammals and induce influx of Ca(2+) into cells. An artificial ladder-shaped polyether possessing a 6/7/6/6/7/6/6 heptacyclic ring system, which was designed for elucidating interactions with transmembrane proteins, was found to be the most potent inhibitor against MTX-induced Ca(2+) influx that has ever been reported. 相似文献
7.
Naro F De Arcangelis V Coletti D Molinaro M Zani B Vassanelli S Reggiani C Teti A Adamo S 《American journal of physiology. Cell physiology》2003,284(4):C969-C976
Cytoplasmic Ca2+concentration ([Ca2+]i) variation is akey event in myoblast differentiation, but the mechanism by which itoccurs is still debated. Here we show that increases of extracellular Ca2+ concentration ([Ca2+]o)produced membrane hyperpolarization and a concentration-dependent increase of [Ca2+]i due to Ca2+influx across the plasma membrane. Responses were not related toinositol phosphate turnover and Ca2+-sensing receptor.[Ca2+]o-induced[Ca2+]i increase was inhibited byCa2+ channel inhibitors and appeared to be modulated byseveral kinase activities. [Ca2+]i increasewas potentiated by depletion of intracellular Ca2+ storesand depressed by inactivation of the Na+/Ca2+exchanger. The response to arginine vasopressin (AVP), which inducesinositol 1,4,5-trisphosphate-dependent[Ca2+]i increase in L6-C5 cells, was notmodified by high [Ca2+]o. On the contrary,AVP potentiated the [Ca2+]i increase in thepresence of elevated [Ca2+]o. Other clones ofthe L6 line as well as the rhabdomyosarcoma RD cell line and thesatellite cell-derived C2-C12 line expressed similar responses to high[Ca2+]o, and the amplitude of the responseswas correlated with the myogenic potential of the cells. 相似文献
8.
Volatile anesthetics inhibit the ion flux through Ca2+-activated K+ channels of rat glioma C6 cells 总被引:2,自引:0,他引:2
Ca2+-activated K+ channels in rat glioma C6 cells were investigated using monolayers of these cells in petri dishes. The ion flux through the channels was studied with 86Rb+ after addition of a Ca2+-ionophore to the incubation medium. Both the influx and efflux of 86Rb+ through these Ca2+-activated K+ channels were inhibited by the general anesthetic halothane (at clinical concentrations). Other volatile anesthetics such as isoflurane, enflurane and methoxyflurane also inhibited the Ca2+-activated K+ channels at clinical concentrations. Inhibition of these channels by general anesthetics could have profound effects on signal transmission in the brain. 相似文献
9.
In previous studies we found that mu-opioids, acting via mu-opioid receptors, inhibit endothelin-stimulated C6 glioma cell growth. In the preceding article we show that the kappa-selective opioid agonist U69,593 acts as a mitogen with a potency similar to that of endothelin in the same astrocytic model system. Here we report that C6 cell treatment with mu-opioid agonists for 1 h results in the inhibition of kappa-opioid mitogenic signaling. The mu-selective agonist endomorphin-1 attenuates kappa-opioid-stimulated DNA synthesis, phosphoinositide turnover, and extracellular signal-regulated kinase phosphorylation. To investigate the role of receptor endocytosis in signaling, we have examined the effects of dynamin-1 and its GTPase-defective, dominant suppressor mutant (K44A) on opioid modulation of extracellular signal-regulated kinase phosphorylation in C6 cells. Overexpression of dynamin K44A in C6 cells does not affect kappa-opioid phosphorylation of extracellular signal-regulated kinase. However, it does block the inhibitory action on kappa-opioid signaling mediated by the kappa-opioid receptor. Our results are consistent with a growing body of evidence of the opposing actions of mu- and kappa-opioids and provide new insight into the role of opioid receptor trafficking in signaling. 相似文献
10.
Two modes of inhibition of the Ca2+ pump in red cells by Ca2+ 总被引:2,自引:0,他引:2
Two different and independent modes of inhibition of the Ca2+ pump by Ca2+ can be detected measuring active Ca2+ extrusion from resealed ghosts of human red cells: one requires extracellular and the other requires intracellular Ca2+. Ki for inhibition by extracellular Ca2+ is about 10 mM. Extracellular Mg2+ replaces Ca2+ in inhibiting Ca2+ transport but with an apparent affinity for inhibition about 3-times less than that for Ca2+. Inhibition by external Ca2+ is not affected by Na+ or K+ at both surfaces of the cell membrane, external EGTA, internal Ca2+ or ATP. The apparent affinity for external Ca2+ progressively raises as pH increases. The effects of extracellular Ca2+ and Mg2+ are consistent with the idea that for Ca2+ pumping to proceed, external sites in the pump must be protonated and not occupied by extracellular Ca2+ or Mg2+. Inhibition by intracellular Ca2+ takes place with a Ki of about 1 mM and is independent of external Ca2+. The inhibitory effects of intracellular Ca2+ can be accounted for if Ca2+ and CaATP were competitive inhibitors of the activation of the pump by Mg2+ and MgATP, respectively. 相似文献
11.
The purpose of this study is to understand the interaction of Na + -Ca2+ exchanger (NCX1), that is one of the essential regulators of Ca2+ homeostasis, with caveolin (Cav)-1 and Cav-2 in Cav-3 null cell (rat C6 glioma cell). Both mRNA and protein expression of NCX1, Cav-1 and Cav-2 was observed, but no expression of mRNA and protein of Cav-3 were observed in C6 glioma cells. In isolated caveolae-enriched membrane fraction, the NCX1, Cav-1 and Cav-2 proteins localized in same fractions. The experiment of immuno-precipitation showed complex formation between the NCX1 and Cavs. Confocal microscopy also supported co-localization of NCX1and Cavs at the plasma membrane. Functionally, sodium-free induced forward mode of NCX1 attenuated by Cav-1 antisense ODN. When treated cells with Cav-2 antisense ODN, both reverse and forward mode of NCX1 was attenuated. From these results, in the Cav-3 lacking cells, the function of NCX1 might be regulated by binding with Cavs. Considering the decrement of NCX1 activity by antisense ODNs, caveolins may play an important role in diverse of pathophysiological process of NCX1-related disorders in the body. 相似文献
12.
13.
We investigated the effect of cytosolic and extracellular Ca2+ on Ca2+ signals in pancreatic acinar cells by measuring Ca2+ concentration in the cytosol([Ca2+]c) and in the lumen of the ER([Ca2+]Lu). To control buffers and dye in the cytosol, a patch-clamp microelectrode was employed. Acetylcholine released Ca2+ mainly from the basolateral ER-rich part of the cell. The rate of Ca2+ release from the ER was highly sensitive to the buffering of [Ca2+]c whereas ER Ca2+ refilling was enhanced by supplying free Ca2+ to the cytosol with [Ca2+]c clamped at resting levels with a patch pipette containing 10 mM BAPTA and 2 mM Ca2+. Elevation of extracellular Ca2+ to 10 mM from 1 mM raised resting [Ca2+]c slightly and often generated [Ca2+]c oscillations in single or clustered cells. Although pancreatic acinar cells are reported to have extracellular Ca2+-sensing receptors linked to phospholipase C that mobilize Ca2+ from the ER, exposure of cells to 10 mM Ca2+ did not decrease [Ca2+]Lu but rather raised it. From these findings we conclude that 1) ER Ca2+ release is strictly regulated by feedback inhibition of [Ca2+]c, 2) ER Ca2+ refilling is determined by the rate of Ca2+ influx and occurs mainly in the tiny subplasmalemmal spaces, 3) extracellular Ca2+-induced [Ca2+]c oscillations appear to be triggered not by activation of extracellular Ca2+-sensing receptors but by the ER sensitised by elevated [Ca2+]c and [Ca2+]Lu. 相似文献
14.
15.
R Muff E F Nemeth S Haller-Brem J A Fischer 《Archives of biochemistry and biophysics》1988,265(1):128-135
The two dihydropyridine enantiomers, (+)202-791 and (-)202-791, that act as voltage-sensitive Ca2+ channel agonist and antagonist, respectively, were examined for effects on cytosolic Ca2+ concentrations ([Ca2+]i) and on hormones secretion in dispersed bovine parathyroid cells and a rat medullary thyroid carcinoma (rMTC) cell line. In both cell types, small increases in the concentration of extracellular Ca2+ evoked transient followed by sustained increases in [Ca2+]i, as measured with fura-2. Increases in [Ca2+]i obtained by raised extracellular Ca2+ were associated with a stimulation of secretion of calcitonin (CT) and calcitonin gene-related peptide (CGRP) in rMTC cells, but an inhibition of secretion of parathyroid hormone (PTH) in parathyroid cells. The Ca2+ channel agonist (+)202-791 stimulated whereas the antagonist (-)202-791 inhibited both transient and sustained increases in [Ca2+]i induced by extracellular Ca2+ in rMTC cells. Secretion of CT and CGRP was correspondingly enhanced and depressed by (+)202-791 and (-)202-791, respectively. In contrast, neither the agonist nor the antagonist affected [Ca2+]i and PTH secretion in parathyroid cells. Depolarizing concentrations of extracellular K+ increased [Ca2+]i and hormone secretion in rMTC cells and both these responses were potentiated or inhibited by the Ca2+ channel agonist or antagonist, respectively. The results suggest a major role of voltage-sensitive Ca2+ influx in the regulation of cytosolic Ca2+ and hormones secretion in rMTC cells. Parathyroid cells, on the other hand, appear to lack voltage-sensitive Ca2+ influx pathways and regulate PTH secretion by some alternative mechanism. 相似文献
16.
Oscillations of free intracellular Ca2+ concentration ([Ca2+]i) are known to occur in many cell types during physiological cell signaling. To identify the basis for the oscillations, we measured both [Ca2+]i and extracellular Ca2+ concentration ([Ca2+]o) to follow the fate of Ca2+ during stimulation of [Ca2+]i oscillations in pancreatic acinar cells. [Ca2+]i oscillations were initiated by either t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Nle-Asp-2-phenylethyl ester (CCK-J), which mobilized Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-insensitive pool, or low concentration of cholecystokinin octapeptide (CCK-OP), which mobilized Ca2+ from the IP3-sensitive internal pool. Little Ca2+ efflux occurred during the oscillations triggered by CCK-J or CCK-OP in spite of a large average increase in [Ca2+]i. When internal store Ca2+ pumps were inhibited with thapsigargin (Tg) during [Ca2+]i oscillations, a rapid Ca2+ efflux occurred similar to that measured in intensely stimulated, nonoscillatory cells. Tg also stimulated 45Ca efflux from internal pools of cells stimulated with CCK-J or a low concentration of CCK-OP. Hence, a large fraction of the Ca2+ released during each spike is reincorporated by the internal store Ca2+ pumps. Surprisingly, when the increase in [Ca2+]i during stimulation of oscillations was prevented by loading the cells with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a persistent activation of Ca2+ release and Ca2+ efflux occurred. This was reflected as a persistent increase in [Ca2+]o in cells suspended at low [Ca2+]o or persistent efflux of 45Ca from internal stores of cells maintained at high [Ca2+]o. Since agonist-stimulated Ca2+ release evidently remains activated when [Ca2+]i is highly buffered, the primary mechanism determining Ca2+ oscillations must include an inhibition of Ca2+ release by [Ca2+]i. Loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no apparent effect on the levels or kinetics of IP3 formation in agonist-stimulated cells. This suggests that [Ca2+]i regulated the oscillation by inhibition of Ca2+ release independent of its possible effects on cellular levels of IP3. 相似文献
17.
The divalent cation selective ionophores A23187 and ionomycin were compared for their effects on the Ca2+ contents, nucleotide contents, and protein synthetic rates of several types of cultured cells. Both ionophores reduced amino acid incorporation by approximately 85% at low concentrations (50–300 nmol/L) in cultured mammalian cells without reducing ATP or GTP contents. At these concentrations A23187 and ionomycin each promoted substantial Ca2+ efflux, whereas at higher concentrations a large influx of the cation was observed. Ca2+ influx occurred at lower ionophore concentrations and to greater extents in C6 glioma and P3X63Ag8 myeloma than in GH3 pituitary cells. The ATP and GTP contents of the cells and their ability to adhere to growth surfaces declined sharply at ionophore concentrations producing increased Ca2+ influx. Prominent reductions of nucleotide contents occurred in EGTA-containing media that were further accentuated by extracellular Ca2+. Ionomycin produced more Ca2+ influx and nucleotide decline than comparable concentrations of A23187. The inhibition of amino acid incorporation and mobilization of cell-associated Ca2+ by ionomycin were readily reversed in GH3 cells by fatty acid-free bovine serum albumin, whereas the effects of A23187 were only partially reversed. Amino acid incorporation was further suppressed by ionophore concentrations depleting nucleotide contents. Mitochondrial uncouplers potentiated Ca2+ accumulation in response to both ionophores. At cytotoxic concentrations Lubrol PX abolished protein synthesis but did not cause Ca2+ influx. Nucleotide depletion at high ionophore concentrations is proposed to result from increased plasmalemmal Ca2+-ATPase activity and dissipation of mitochondrial proton gradients and to cause intracellular Ca2+ accumulation. Increased Ca2+ contents in response to Ca2+ ionophores are proposed as an indicator of ionophore-induced cytotoxicity.Abbreviations BSA
bovine serum albumin
- EGTA
[ethylenebis(oxyethylenenitrilo)]tetraacetic acid
- PKR
double-stranded RNA-regulated protein kinase
- ER
endoplasmic reticulum
- eIF
eukaryotic initiation factor 相似文献
18.
HMBA, a differentiation inducer belonging to the class of hybrid polar compounds, is known to induce terminal differentiation of a number of leukemic and solid tumour cell lines. In this report we have shown that HMBA markedly inhibits growth of C6 glioma cells at non-cytotoxic concentrations ranging from 2.5 m m to 10 m m in a dose-dependent manner. The growth inhibitory effect can be detected as early as 18--24 h. By the sixth day the growth inhibition decreases at all the concentrations tested. Treatment with HMBA results in an accumulation of C6 cells in G0/G1 phase along with a decrease in the number of cells in S phase. HMBA induces morphological differentiation of C6 cells and increases expression of glial fibriliary acidic protein (GFAP), a marker for mature astrocytes. HMBA induces c-fos and represses cycloheximide-induced c-jun and fra-1 expression. HMBA-induced growth inhibition of C6 cells is accompanied by a decrease in Cdk4 protein levels. However, HMBA fails to sustain low Cdk4 levels, which may be responsible for HMBA's failure to sustain the growth inhibitory effect. 相似文献
19.
Polyunsaturated free fatty acids (PUFAs) of both w-3 and w-6 series, induce a rapid increase of cytosolic free Ca2+ concentration ([Ca2+]i) in a leukemic T-cell line (JURKAT), measured by the fluorescent indicator fura-2. The early increase in [Ca2+]i was transient, falling to a sustained level which returned to base line after 10-15 min. In Ca2+-free medium, PUFAs still caused an early increase in [Ca2+]i but rapidly returned to basal. Depletion of endoplasmic reticular Ca2+ pool by addition of OKT3 (antibodies to CD3 of the T3-antigen receptor complex) to JURKAT cells (in Ca2+-free medium) abolished the PUFAs-mediated [Ca2+]i increase and vice versa. By using saponin-permeabilized JURKAT cells, the intracellular free Ca2+ released by PUFAs was found to be the non-mitochondrial, ATP-dependent sequestered Ca2+ pool which is sensitive to inositol 1,4,5-trisphosphate. However, PUFAs do not induce any apparent increase in inositol phosphates in JURKAT cells. No Ca2+ influx was detected in JURKAT cells when stimulated with PUFAs. A correlation was observed between both the carbon chain length and the number of double bonds with the ability to mobilize cytosolic free [Ca2+]i in the w-3 PUFAs. These results demonstrate that PUFAs stimulate the release of Ca2+ from the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool in the endoplasmic reticulum of JURKAT cells via a mechanism independent of inositol lipid hydrolysis. 相似文献
20.
In this report, the effects of C(6)-ceramide on the voltage-gated inward Na(+) currents (I(Na)), two types of main K(+) current [outward rectifier delayed K(+) current (I(K)) and outward transient K(+) current (I(A))], and cell death in cultured rat cerebellar granule cells were investigated. At concentrations of 0.01-100 microM, ceramide produced a dose-dependent and reversible inhibition of I(Na) without alteration of the steady-state activation and inactivation properties. Treatment with C(2)-ceramide caused a similar inhibitory effect on I(Na). However, dihydro-C(6)-ceramide failed to modulate I(Na). The effect of C(6)-ceramide on I(Na) was abolished by intracellular infusion of the Ca(2+)-chelating agent, 1,2-bis (2-aminophenoxy) ethane-N, N, N9, N9-tetraacetic acid, but was mimicked by application of caffeine. Blocking the release of Ca(2+) from the sarcoplasmic reticulum with ryanodine receptor blocker induced a gradual increase in I(Na) amplitude and eliminated the effect of ceramide on I(Na). In contrast, the blocker of the inositol 1,4,5-trisphosphate-sensitive Ca(2+) receptor did not affect the action of C(6)-ceramide. Intracellular application of GTPgammaS also induced a gradual decrease in I(Na) amplitude, while GDPbetaS eliminated the effect of C(6)-ceramide on I(Na). Furthermore, the C(6)-ceramide effect on I(Na) was abolished after application of the phospholipase C (PLC) blockers and was greatly reduced by the calmodulin inhibitors. Fluorescence staining showed that C(6)-ceramide decreased cell viability and blocking I(Na) by tetrodotoxin did not mimic the effect of C(6)-ceramide, and inhibiting intracellular Ca(2+) release by dantrolene could not decrease the C(6)-ceramide-induced cell death. We therefore suggest that increased PLC-dependent Ca(2+) release through the ryanodine-sensitive Ca(2+) receptor may be responsible for the C(6)-ceramide-induced inhibition of I(Na), which does not seem to be associated with C(6)-ceramide-induced granule neuron death. 相似文献