首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In pairs of adjacent genes co-transcribed on bacterial polycistronic mRNAs, translation of the first coding region frequently functions as a positive factor to couple translation to the distal coding region. Coupling efficiencies vary over a wide range, but synthesis of both gene products at similar levels is common. We report the results of characterizing an unusual gene pair, in which only about 1% of the translational activity from the upstream gene is transmitted to the distal gene. The inefficient coupling was unexpected because the upstream gene is highly translated, the distal initiation site has weak but intrinsic ability to bind ribosomes, and the AUG is only two nucleotides beyond the stop codon for the upstream gene. The genes are those in the filamentous phage IKe genome, which encode the abundant single-stranded DNA binding protein (gene V) and the minor coat protein that caps one tip of the phage (gene VII). Here, we have used chimeras between the related phage IKe and f1 sequences to localize the region responsible for inefficient coupling. It mapped upstream from the intercistronic region containing the gene V stop codon and the gene VII initiation site, indicating that low coupling efficiency is associated with gene V. The basis for inefficient coupling emerged when coupling efficiency was found to increase as gene V translation was decreased below the high wild-type level. This was achieved by lowering the rate of elongation and by decreasing the efficiency of suppression at an amber codon within the gene. Increasing the strength of the Shine-Dalgarno interaction with 16S rRNA at the gene VII start also increased coupling efficiency substantially. In this gene pair, upstream translation thus functions in an unprecedented way as a negative factor to limit downstream expression. We interpret the results as evidence that translation in excess of an optimal level in an upstream gene interferes with coupling in the intercistronic junction.  相似文献   

2.
In a reverse of many studies of translational initiation sites, we have explored the basis for the inactivity of an apparently defective initiation site. Gene VII of the filamentous phage f1 has a translational start site with highly unusual functional properties and a sequence dissimilar to a prokaryotic ribosome binding site. The VII site shows no activity in assays of independent initiation, even in a deletion series designed to remove potentially interfering RNA secondary structure. Activity from the VII site is only observed if the site is coupled to a source of translation immediately upstream, but its efficiency is low at a one-nucleotide spacing from the stop codon of the upstream cistron and extremely sensitive to the distance between the stop codon and the gene VII AUG. These and other atypical characteristics of coupling distinguish the VII site from most coupled initiation sites. To identify the pattern of nucleotide substitutions that give the VII site the capacity for independent initiation, a series of designed and random point mutations were introduced in the sequence. Improving the Shine-Dalgarno complementarity from GG to GGAG or GGAGG made activity detectable, but at only low levels. Random substitutions, each increasing activity above background by a small increment, were found at 16 positions throughout the region of ribosome contact. These substitutions lengthened the Shine-Dalgarno complementarity or changed the G and C residues present in the wild-type site to A or T. Significant activity was not observed unless a strong Shine-Dalgarno sequence and a number of the up-mutations were present together. The nature and distribution of the substitutions and their agreement with the known preferences for nucleotides in initiation sites provide evidence that the VII site's major defect is its primary sequence overall. It appears to lack the specialized sequence required to bind free 30 S ribosomes, and thus depends on the translational coupling process to give it limited activity.  相似文献   

3.
4.
5.
Although the initiation and elongation steps of protein synthesis have been extensively char-acterized in Escherichia coli (E. coli), the translation termination is still less well understood. However, recent experiment result might have provided some hints for our deeper understanding of the termination mechanism. (i) Not only does the translation stop codon act as a signal for ter-mination, but also its context influences the translation termination[13]; (ii) the structure similar-ity betwee…  相似文献   

6.
Coupled expression of the M1 and BM2 open-reading frames (ORFs) of influenza B from the dicistronic segment 7 mRNA occurs by a process of termination-dependent reinitiation. The AUG start codon of the BM2 ORF overlaps the stop codon of the upstream M1 ORF in the pentanucleotide UAAUG, and BM2 synthesis is dependent upon translation of the M1 ORF and termination at the stop codon. Here, we have investigated the mRNA sequence requirements for BM2 expression. Termination-reinitiation is dependent upon 45 nucleotide (nt) of RNA immediately upstream of the UAAUG pentanucleotide, which includes an essential stretch complementary to 18S rRNA helix 26. Thus, similar to the caliciviruses, base-pairing between mRNA and rRNA is likely to play a role in tethering the 40S subunit to the mRNA following termination at the M1 stop codon. Consistent with this, repositioning of the M1 stop codon more than 24 nt downstream from the BM2 start codon inhibited BM2 expression. RNA structure probing revealed that the RNA upstream of the UAAUG overlap is not highly structured, but upon encountering the M1 stop codon by the ribosome, a stem-loop may form immediately 5' of the ribosome, with the 18S rRNA complementary region in the apical loop and in close proximity to helix 26. Mutational analysis reveals that the normal requirements for start site selection in BM2 expression are suspended, with little effect of initiation codon context and efficient use of noncanonical initiation codons. This suggests that the full complement of initiation factors is not required for the reinitiation process.  相似文献   

7.
8.
9.
X Chen  K L Kindle    D B Stern 《The Plant cell》1995,7(8):1295-1305
To study translation initiation in Chlamydomonas chloroplasts, we mutated the initiation codon AUG to AUU, ACG, ACC, ACU, and UUC in the chloroplast petA gene, which encodes cytochrome f of the cytochrome b6/f complex. Cytochrome f accumulated to detectable levels in all mutant strains except the one with a UUC codon, but only the mutant with an AUU codon grew well at 24 degrees C under conditions that require photosynthesis. Because no cytochrome f was detectable in the UUC mutant and because each mutant that accumulated cytochrome f did so at a different level, we concluded that any residual translation probably initiates at the mutant codon. As a further demonstration that alternative initiation sites are not used in vivo, we introduced in-frame UAA stop codons immediately downstream or upstream or in place of the initiation codon. Stop codons at or downstream of the initiation codon prevented accumulation of cytochrome f, whereas the one immediately upstream of the initiation codon had no effect on the accumulation of cytochrome f. These results suggest that an AUG codon is not required to specify the site of translation initiation in chloroplasts but that the efficiency of translation initiation depends on the identity of the initiation codon.  相似文献   

10.
An UGA stop codon context which is inefficient because of the 3'-flanking context and the last two amino acids in the gene protein product has a negative effect on gene expression, as shown using a model protein A' gene. This is particularly true at low mRNA levels, corresponding to a high intracellular ribosome/mRNA ratio. The negative effect is smaller if this ratio is decreased, or if the distance between the initiation and termination signals is increased. The results suggest that an inefficient termination codon can cause ribosomal pausing and queuing along the upstream mRNA region, thus blocking translation initiation of short genes. This cis control effect is dependent on the stop codon context, including the C-terminal amino acids in the gene product, the translation initiation signal strength, the ribosome/mRNA ratio and the size of the mRNA coding region. A large proportion of poorly expressed natural Escherichia coli genes are small, and the weak termination codon UGA is under-represented in small, highly expressed E.coli genes as compared with the efficient stop codon UAA.  相似文献   

11.
12.
13.
14.
15.
Precise frameshift and nonsense mutations were introduced into the region preceding the galactokinase gene (galK) of Escherichia coli. These mutations after the position at which upstream translation terminates relative to the galK translation initiation signal. Constructions were characterized that allow ribosomes to stop selectively before, within or downstream from the galK initiation signal. The effects of these mutations on galK expression were monitored. Galactokinase levels are highest when upstream translation terminates within the galK initiation region. In contrast, when translation stops either upstream or down stream from the galK start site, galK expression is drastically reduced. These results demonstrate that the galK gene is translationally coupled to the gene immediately preceding galK in the gal operon (that is, galT), and that the coupling effect depends primarily on the position at which upstream translation terminates relative to the galK start site. Possible mechanisms and implications of this translational coupling phenomenon are discussed.  相似文献   

16.
RNA phage GA coat and lysis protein expression are translationally coupled through an overlapping termination and initiation codon UAAUG. Essential for this coupling are the proximity of the termination codon of the upstream coat gene to the initiation codon of the lysis gene (either a <3 nucleotide separation or physical closeness through a possible hairpin structure) but not the Shine-Dalgarno sequence. This suggests that the ribosomes completing the coat gene translation are exclusively responsible for translation of the lysis gene. Inactivation of ribosome recycling factor (RRF), which normally releases ribosomes at the termination codon, did not influence the expression of the reporter gene fused to the lysis gene. This suggests the possibility that RRF may not release ribosomes from the junction UAAUG. However, RRF is essential for correct ribosomal recognition of the AUG codon as the initiation site for the lysis gene.  相似文献   

17.
18.
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno--independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno--independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号