首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Plant materials (intact leaves, chloroplasts or subchloroplast particles) preilluminated at a low temperature (e.g. −60°C) were rapidly cooled to −196°C and then the luminescence emitted from the sample on raising the temperature was measured as a function of temperature, by means of a sensitive photo-electron counting technique. Mature spinach leaves showed five luminescence bands at different temperatures which were denoted as Zv, A, B1, B2 and C bands. The A, B1, B2 and C bands appeared at constant temperatures, −10, +25, +40 and +55°C, respectively, being independent of the illumination temperature, but the Zv band appeared at a variable temperature slightly higher than the illumination temperature. The B1 and B2 bands were absent in the thermoluminescence profiles of samples devoid of the oxygenevolving activity, such as heat-treated spinach leaves, wheat leaves greened under intermittent illumination and photosystem-II particles prepared with Triton X-100. It was deduced that these luminescence bands arise from the energy stored by the electron flow in photosystem II to evolve oxygen, and other bands were ascribed to charge-separation in some other sites not related to the oxygen evolving system.  相似文献   

2.
David B. Knaff  Richard Malkin 《BBA》1974,347(3):395-403
The primary reaction of Photosystem II has been studied over the temperature range from −196 to −20 °C. The photooxidation of the reaction-center chlorophyll (P680) was followed by the free-radical electron paramagnetic resonance signal of P680+, and the photoreduction of the Photosystem II primary electron acceptor was monitored by the C-550 absorbance change.

At temperatures below −100 °C, the primary reaction of Photosystem II is irreversible. However, at temperatures between −100 and −20 °C a back reaction that is insensitive to 3-(3′,4′-dichlorophenyl)-1,1′-dimethylurea (DCMU) occurs between P680+ and the reduced acceptor.

The amount of reduced acceptor and P680+ present under steady-state illumination at temperatures between −100 and −20 °C is small unless high light intensity is used to overcome the competing back reaction. The amount of reduced acceptor present at low light intensity can be increased by adjusting the oxidation-reduction potential so that P680+ is reduced by a secondary electron donor (cytochrome b559) before P680+ can reoxidize the reduced primary acceptor. The photooxidation of cytochrome b559 and the accompanying photoreduction of C-550 are inhibited by DCMU. The inhibition of C-550 photoreduction by DCMU, the dependence of P680 photooxidation and C-550 photoreduction on light intensity, and the effect of the availability of reduced cytochrome b559 on C-550 photoreduction are unique to the temperature range where the Photosystem II primary reaction is reversible and are not observed at lower temperatures.  相似文献   


3.
Recently, we demonstrated that angiotensin-(1–7) (Ang-(1–7)) stimulates the Na+-ATPase activity through a losartan-sensitive angiotensin receptor, whereas bradykinin inhibits the enzyme activity through the B2 receptor [Regul. Pept. 91 (2000) 45; Pharmacol. Rev. 32 (1980) 1]. In the present paper, the effect of bradykinin (BK) on Ang-(1–7)-stimulated Na+-ATPase activity was evaluated. Preincubation of Na+-ATPase with 10−9 M Ang-(1–7) increases enzyme activity from 7.9±0.9 to 14.1±1.5 nmol Pi mg−1 min−1, corresponding to an increase of 79% (p<0.05). This effect is reverted by bradykinin in a dose-dependent manner (10−14–10−8 M), reaching maximal inhibitory effect at 10−9 M. Des-Arg9 bradykinin (DABK), an agonist of B1 receptor, at the concentrations of 10−9–10−7 M, does not mimic the BK inhibitory effect, and des-Arg9-[Leu8]-BK (DALBK), a B1 receptor antagonist, at the concentrations of 10−10–10−7 M, does not prevent the inhibitory effect of BK on Ang-(1–7)-stimulated enzyme. On the other hand, HOE 140, an antagonist of B2 receptor, abolishes the inhibitory effect of BK on the Ang-(1–7)-stimulated enzyme in a dose-dependent manner, reaching maximal effect at 10−7 M. Taken together, these data indicate that stimulation of B2 receptors by BK can counteract the stimulatory effect of Ang-(1–7) on the proximal tubule Na+-ATPase activity.  相似文献   

4.
A novel nutrient removal/waste heat utilization process was simulated using semicontinuous cultures of the thermophilic cyanobacterium Fischerella. Dissolved inorganic carbon (DIC)-enriched cultures, maintained with 10 mg l−1 daily productivity, diurnally varying temperature (from 55°C to 26–28°C), a 12:12 light cycle (200 μE sec−1 m−2) and 50% biomass recycling into heated effluent at the beginning of each light period, removed > 95% of NO3 + NO2−N, 71% of NH3-N, 82% of PO43− −P, and 70% of total P from effluent water samples containing approximately 400 μg l−1 combined N and 60 μg l−1 P. Nutrient removal was not severely impaired by an altered temperature gradient, doubled light intensity, or DIC limitation. Recycling 75% of the biomass at the end of each light period resulted in unimpaired NO3 + NO2 removal, 38–45% P removal and no net NH3 removal. Diurnally varying P removal, averaging 50–60%, and nearly constant > 80% N removal, are therefore projected for a full-scale process with continuous biomass recycling.  相似文献   

5.
Anne Joliot 《BBA》1974,357(3):439-448
The fluorescence yield has been measured on spinach chloroplasts at low temperature (−30 to −60°C) for various dark times following a short saturating flash. A decrease in the fluorescence yield linked to the reoxidation of the Photosystem II electron acceptor Q is still observed at −60°C. Two reactions participate in this reoxidation: a back reaction or charge recombination and the transfer of an electron from Q to Pool A. The relative competition between these two reactions at low temperature depends upon the oxidation state of the donor side of the Photosystem II center:

1. (1) In dark-adapted chloroplasts (i.e. in States S0+S1 according to Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 11, 457–475), Q, reduced by a flash at low temperature, is reoxidized by a secondary acceptor and the positive charge is stabilized on the Photosystem II donor Z. Although this reaction is strongly temperature dependent, it still occurs very slowly at −60°C.

2. (2) When chloroplasts are placed in the S2+S3 states by a two-flash preillumination at room temperature, the reoxidation of Q after a flash at low temperature is mainly due to a temperature-independent back reaction which occurs with non-exponential kinetics.

3. (3) Long continuous illumination of a frozen sample at −30°C causes 6–7 reducing equivalents to be transferred to the pool. Thus, a sufficient number of oxidizing equivalents should have been generated to produce at least one O2 molecule.

4. (4) A study of the back reaction in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) shows the superposition of two distinct non-exponential reactions one temperature dependent, the other temperature independent.

Abbreviations: DCMU; 3(3; 4-dichlorophenyl)-1; 1-dimethylurea  相似文献   


6.
S. Okayama  W. L. Butler 《BBA》1972,267(3):523-529
The maximum light-induced fluorescence yield, FM, of spinach chloroplasts at − 196 °C was less when the chloroplasts were oxidized with ferricyanide prior to freezing; the minimum fluorescence yield, F0, of the dark-adapted chloroplasts at − 196 °C was unaffected. The ratio of the fluorescence yields, FM/F0, measured at 695 nm at low temperature was 4.5–5.0 for normal chloroplasts and 2.0–2.5 in the presence of ferricyanide. The oxidative titration curve of FM followed a 1 electron Nernst equation with a midpoint potential of 365 mV and followed closely to the oxidation of cytochrome b559. The photoreduction of C−550 at low temperature was the same at all redox potentials over the range of 200–500 mV. It is suggested that a relatively strong oxidant associated with the water-splitting side of Photosystem II, possibly the primary electron donor, can chlorophyll fluorescence of Photosystem II as well as the primary electron acceptor.  相似文献   

7.
Intravenous administration of ovokinin(2–7), a cleavage peptide derived from ovalbumin, dose-dependently (0.1–5 mg/kg) lowered the mean arterial pressure (MAP) that was not accompanied by a significant change in the heart rate (HR) of urethane-anesthetized rats. The hypotensive effects of ovokinin(2–7) were five orders of magnitude lower compared to that of bradykinin and were largely prevented by pretreatment with the bradykinin B2 receptor antagonist HOE140 (81.6±18.4%) and moderately affected by the B1 receptor antagonist [des-Arg10]-HOE140 (26.3±15.5%). Intracellular Ca2+ levels, as measured by Fur 2-AM, were significantly elevated in cultured aorta smooth muscle cells by ovokinin(2–7). The increases were abolished by HOE140 and unaffected by [des-Arg10]-HOE140. The elevation of intracellular Ca2+ by ovokinin(2–7) was dependent on Ca2+ entry from extracellular space as it was reduced in a Ca2+-free solution. Pretreatment of the cells with the phospholipase C inhibitor U73122 (2 μM) eliminated the Ca2+ increase by the peptide. PA phosphohydrolase and phospholipase A2 inhibitors significantly reduced the responses as well. Our results show that ovokinin(2–7) modulates cardiovascular activity by interacting with B2 bradykinin receptors.  相似文献   

8.
A new room-temperature molten salt, 1:2 LiCl-ethylaluminum dichloride (LiCl-EtAlCl2, f.p. about 178 K), is examined using 13C relaxation methods at 7.05 T (−25 to + 80 °C). The methylene carbon undergoes scalar relaxation of the ‘second kind’ as it is coupled to a faster relaxing (quadrupolar) nucleus. LiCl-EtAlCl2 undergoes a significant liquid-state phase change between 5 and 15 °C as evidenced by observed changes in the relaxation properties of the methylene and methyl carbons and J(13C−27Al). The J(13C−27Al) coupling constants are 75 (− 10 to + 5 °C) and 11 Hz (15–65 °C), indicating a change in structure between 5 and 15 °C. Chemical shift anisotropies of 56 and 48 ppm are obtained for the methylene and methyl carbons in the EtAlCl2 dimer part of the 1:2 LiCl-EtAlCl2 solution.  相似文献   

9.
Andr Vermeglio  Paul Mathis 《BBA》1973,292(3):763-771
The effect of light on the reaction center of Photosystem II was studied by differential absorption spectroscopy in spinach chloroplasts.

At − 196 °C, continuous illumination results in a parallel reduction of C-550 and oxidation of cytochrome b559 high potential. With flash excitation, C-550 is reduced, but only a small fraction of cytochrome b559 is oxidized. The specific effect of flash illumination is suppressed if the chloroplasts are preilluminated by one flash at 0 °C.

At − 50 °C, continuous illumination results in the reduction of C-550 but little oxidation of cytochrome b559. However, complete oxidation is obtained if the chloroplasts have been preilluminated by one flash at 0 °C. The effect of preillumination is not observed in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.

A model is discussed for the reaction center, with two electron donors, cytochrome b559 and Z, acting in competition. Their respective efficiency is dependent on temperature and on their states of oxidation. The specific effect of flash excitation is attributed to a two-photon reaction, possibly based on energy-trapping properties of the oxidized trap chlorophyll.  相似文献   


10.
C. Görlach  M. Wahl 《Peptides》1996,17(8):1373-1378
Ring segments of rat middle cerebral artery (MCA) were prepared for measurement of isometric force and precontracted with 10−4 M uridine triphosphate (UTP). Concentration-effect curves (CEC) were constructed for bradykinin (BK, 10−8–10−5 M) in segments with functionally intect (E+) or denuded (E−) endothelium. E− segments did not dilate to BK. The BK receptor was characterized by application of specific B1 or B2 antagonists [des-Arg9-Leu8] BK (10−5 M) and [ -Arg0-Hyp3-Thi5- -Tic7-Oic8] BK (HOE140,3 × 10−7 M), respectively, or B1 agonist [des-Arg9] BK (10−8–10−4 M). Involvement of nitric oxide (NO) was tested with NG-nitro- -arginine (LNNA, 10−4 M). BK induced concentration-dependent relaxation with a maximal effect (Emax) of 40.86 ± 1.50% at 10−6 M and a pD2 (−log10 EC50) of 6.818 ± 0.044. This relaxation could be prevented with HOE140 or LNNA, but was not influenced by [des-Arg9-Leu8] BK. [des-Arg9] BK did not induce any effect. These results demonstrate that BK induced relaxation via endothelial B2 receptors and release of NO in isolated rat MCA.  相似文献   

11.
Proton NMR studies of N,N-diethylformamide (def) exchange on [M(Me6tren)def]2+ where M = Co and Cu yield: kex (298.2K) = 26.3 ± 2.2, 980 ± 70 s−1; ΔH = 58.3 ± 1.7, 36.3 ± 0.9 kJ mol−1; ΔS= −22.2 ± 4.6, −65.9 ± 2.5 J K−1 mol−1; and ΔV = −1.3 ± 0.2, 5.3 ± 0.3 cm3 mol−1 respectively. These data which are consistent with a and d activation modes operating when M = Co and Cu respectively are compared with data for related systems.  相似文献   

12.
Stable light-induced absorbance changes in chloroplasts at −196 °C were measured across the visible spectrum from 370 to 730 nm in an effort to find previously undiscovered absorbance changes that could be related to the primary photochemical activity of Photosystem I or Photosystem II. A Photosystem I mediated absorbance increase of a band at 690 nm and a Photosystem II mediated absorbance increase of a band at 683 nm were found. The 690-nm change accompanied the oxidation of P700 and the 683-nm increase accompanied the reduction of C-550. No Soret band was detected for P700.

A specific effort was made to measure the difference spectrum for the photooxidation of P680 under conditions (chloroplasts frozen to −196 °C in the presence of ferricyanide) where a stable, Photosystem II mediated EPR signal, attributed to P680+ has been reported. The difference spectra, however, did not show that P680+ was stable at −196 °C under any conditions tested. Absorbance measurements induced by saturating flashes at −196 °C (in the presence or absence of ferricyanide) indicated that all of the P680+ formed by the flash was reduced in the dark either by a secondary electron donor or by a backreaction with the primary electron acceptor. We conclude that P680+ is not stable in the dark at −196 °C: if the normal secondary donor at −196 °C is oxidized by ferricyanide prior to freezing, P680+ will oxidize other substances.  相似文献   


13.
Due to contradictions in the literature we have redetermined the acid-base properties of riboflavin (=RiFl; vitamin B2), i.e. 7,8-dimethyl-10-ribityl-isoalloxazine, and of flavin mononucleotide (FMN2−), also known as riboflavin 5′-phosphate, via potentiometric pH titrations (I = 0.1 M, NaNO3; 25 °C). In contrast to various claims, the isoalloxazine ring cannot be protonated at pH > 1, a result in agreement with an early study (pKa = −0.2; L. Michaelis, M.P. Schubert and C.V. Smythe, J. Biol. Chem., 116 (1936) 587–607); deprotonation of the ring system occurs in both compounds with pKa 10. The pKa value of 0.7 determined for the deprotonation of H2(FMN) must be attributed to the release of the first proton from the fully protonated phosphate group; its second proton is released with pKa = 6.18 in agreement with the acidity constants of various other monoprotonated monophosphate esters. The stability constants of the 1:1 complexes formed between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ or Cd2+ (---M2+) and FMN2− were determined by potentiometric pH titrations in aqueous solution (I = 0.1 M, NaNO3; 25 °C). The log stability constants of all these M(FMN) complexes are about 0.2 log units higher than expected from the basicity of the phosphate group. This slight stability increase cannot be attributed to the formation of a seven-membered chelate involving the ribit-hydroxy group at C-4′ as the stability constants for the M2+ 1:1 complexes of glycerol 1-phosphate (G1P2−) demonstrate: G1P2− contains the same structural unit which would also allow in this case the formation of the mentioned seven-membered chelate; however, the stability of the M(G1P) complexes is solely determined by the basicity of the phosphate group. Hence, in agreement with earlier conclusions (J. Bidwell, J. Thomas and J. Stuehr, J. Am. Chem. Soc., 108 (1986) 820–825) regarding Ni(FMN) one must conclude that the slight stability increase of the M(FMN) complexes has to be attributed to the isoalloxazine ring. The equality of the stability increase of the complexes for all the mentioned ten metal ions precludes its attribution to an interaction with an N site and makes a specific interaction with an O site also somewhat unlikely. In addition, carbonyl oxygens appear as not very favorable for the formation of macrochelates by a further interaction with already phosphate-coordinated metal ions. Therefore, we propose that the slight but significant stability increase originates from M(FMN) species (with a formation degree of about 30%) in which the hydrophobic flavin residue is close to the metal ion, thereby lowering the ‘effective’ dielectric constant in the microenvironment of the metal ion and thus indirectly promoting the −PO32−/M2+ interaction.  相似文献   

14.
A transgenic mouse model, deficient in kinin B1 receptor (B1−/−) was used to evaluate the role of B2 receptor in the smooth muscle stomach fundus. The results showed that the potency of bradykinin (BK) to induce contraction in the gastric tissue was maintained whereas the efficacy was markedly reduced. The angiotensin converting enzyme (ACE) inhibitor captopril potentiated BK-induced effect in wild type (WT) but not in B1−/− fundus. However, ACE activity detected by the convertion of Ang I to Ang II was inhibited by captopril in both types of gastric tissues. Taking into account the hypothesis that captopril and ACE bind to the B2 receptor, we suggest that this complex was not formed in the stomach deficient in B1 receptor. Therefore, our finding strongly support the hypothesis that in smooth muscles that constitutively express the kinin B1 and B2 receptors, an interaction between captopril and ACE, B1 and B2 receptors should occur forming a complex protein interaction for the potentiating effect of ACE on kinin receptors.  相似文献   

15.
In this study, the maximum and minimum lethal temperatures (LT50) of L. intermedia and L. laeta were determined in two treatments: gradual heating (25–50°C) and cooling (25°C to −5°C), and 1 h at a constant temperature. In gradual temperatures change, L. intermedia mortality started at 40°C and the LT50 was 42°C; for L. laeta, mortality began at 35°C and the LT50 was 40°C. At low temperatures, mortality was registered only at −5°C for both species. In the constant temperature L. intermedia showed a maximum LT50 at 35°C and L. laeta at 32°C; the minimum LT for both species was −7°C.  相似文献   

16.
Thor Arnason  John Sinclair 《BBA》1976,430(3):517-523
The modulated oxygen polarograph has been used to study the rate-determining steps of photosynthetic oxygen evolution in spinach chloroplasts. The rate constant, k, of the reaction has a value of 218±10 (S.E.) s−1 at 23 °C and an activation energy of 7±2 (S.E.) kcal · mol−1. A kinetic isotope experiment indicated that this step is probably not the water-splitting reaction. These findings resemble previous results with the unicellular alga Chlorella (Sinclair, J. and Arnason, T. (1974) Biochim. Biophys. Acta 368, 393–400). In other experiments we changed the pH, O2 concentration and osmolarity of the medium, and treated the chloroplasts with 1 mM NH4Cl without detecting any significant change in k. These results suggest that the step is irreversible. However, a significantly lower value of k, 110±20 (S.E.) s−1 was obtained when all salts except 1 mM MgCl2 were removed from the medium bathing the chloroplasts.  相似文献   

17.
Shiger U Itoh  Norio Murata 《BBA》1974,333(3):525-534
1. Delayed light of chlorophyll emitted at 0.1–3.9 ms after cessation of repetitive flash light was studied at temperatures between +40 and −196 °C in isolated spinach chloroplasts.

2. Induction kinetics of delayed light varied depending on temperature. It was found to be composed of two phases; one was an initial rapid rise followed by a rather fast decline to a low steady state level (fast phase), and the other was a slow increase after the initial rapid rise to the maximum followed by an insignificant slow decrease to a high steady state level (slow phase). The fast phase existed between −175 and 40 °C with the maximum at −40 °C, while the slow phase, between 0 and 40 °C with the maximum at 25 °C.

3. The intensity of delayed light at −175 °C was found to be less than one fiftieth that at 0 °C, and no delayed light emission was observed at −196 °C within experimental accuracy. This is in contrast to the results reported by Tollin, G., Fujimori, E. and Calvin, M. ((1958) Proc. Natl. Acad. Sci. U.S. 44, 1035–1047) in which the intensity of delayed light measured at −170 °C was about a half that at 0 °C.

4. The induction of delayed light measured at −96 °C was found to be significantly suppressed by the preillumination at −196 °C. This finding suggests that the primary photochemical event still survives at −196 °C without emission of delayed light.

5. Decay kinetics of delayed light after the flash excitation revealed the presence of at least two decay components. A slow decay component with a half decay time of several tens of milliseconds was observed at temperatures higher than 0 °C. A fast decay component with a half decay time of about 0.2 ms was observed at temperatures between −120 and 25 °C. The decay rate of this component was slightly retarded on cooling.

6. The System II particles derived from spinach chloroplasts with digitonin treatment showed a temperature dependence of delayed light similar to that of the chloroplasts. System I particles, on the other hand, scarcely emitted the delayed light at any temperature between 40 and −196 °C.  相似文献   


18.
Responses of CAM Dendrobium Sonia leaves and flowers to high light and high temperature were studied in shade-grown plants after exposure to intermediate and full sunlight under natural conditions. Photosynthetic O2 evolution decreased in leaves after exposure to full sunlight for 2 weeks while leaves exposed to intermediate sunlight showed an increase in photosynthesis as compared to those leaves maintained in the shade. On the first day of treatment, the changes of Fv/Fm in both leaves and petals grown in the shade were negligible during the day. However, there was a steep decrease in Fv/Fm in both leaves and petals with an increase in incident light during midday after exposure to full sunlight. When exposed to intermediate sunlight, there were no significant changes in Fv/Fm in leaves. The Fv/Fm values of petals, however, decreased during midday. Temperature of thin petals was higher than that of thick leaves during midday under full and intermediate sunlight while that of petals and leaves were similar when grown in the shade. Over the 2-week treatment period, lowered chlorophyll and sustained decreases in Fv/Fm were observed in both leaves and flowers (sepals and petals) when exposed to full sunlight, indicative of ‘chronic photoinhibition'. Photoinhibition was prevented in leaves but occurred in flowers when exposed to intermediate sunlight. It was assumed that photodamage to both leaves and flowers were partially due to the higher temperature. The higher susceptibility of flowers to high light as compared to that of leaves was due to its higher temperature during midday. This was further supported by the findings that more severe damage occurred in flowers at higher temperature of 38°C than 28°C under a higher PFD of 1500 μmol m−2 s−1.  相似文献   

19.
The conformation of red bean globulin dispersions (≈10% in D2O or deuterated phosphate buffer pD 7.4) under the influence of pH, chaotropic salts, protein structure perturbants, and heating conditions was studied by Fourier-transform infrared (FTIR) spectroscopy. The FTIR spectrum of red bean globulin showed major bands from 1682 to 1637 cm−1 in the amide I′ region, corresponding to the four types of secondary structures, i.e. β-turns, β-sheets, -helix and random coils. At extreme pH conditions, there were changes in intensity in bands attributed to β-sheet (1637 and 1618 cm−1) and random coil (1644 cm−1) structures, and shifts of these bands to lower or higher wavenumbers, indicating changes in protein conformation. Chaotropic salts caused progressive increases in random coil structures and concomitant decreases in β-sheet bands, following the lyotrophic series of anions. In the presence of sodium dodecyl sulfate and ethylene glycol, pronounced increases in the random coil band were observed, accompanied by slight shifts of the β-sheet band. Addition of dithiothreitol and N-ethylmaleimide did not cause marked changes in the FTIR spectra. Heating at increasing temperature led to progressive decreases in the intensity of the -helix and β-sheet bands and increases in random coil band intensity, leveling off at around 60 °C. The data suggest that re-organization of protein structure occurred at temperatures well below the denaturation temperature of red bean globulin (86 °C) as determined by differential scanning calorimetry. This was accompanied by pronounced increases in the intensity of the two intermolecular β-sheet bands (1682 and 1619–1620 cm−1) associated with the formation of aggregated strands at higher temperatures (80–90 °C). Increases in intensity of the aggregation bands were also observed in the heat-induced buffer-soluble and insoluble aggregates.  相似文献   

20.
Estimation of the ammonia production of the shrimp C. crangon in two littoral ecosystems (oligotrophic sand and eutrophic mud) was determined in winter and summer conditions from laboratory observations in experimental microcosms. The ammonia excretion rate of C. crangon was not influenced by either the sediment type or the ammonia concentration of the overlying water; on the other hand, the mean excretion rate and the response to initial handling stress increased markedly as shrimp were deprived of soft substratum.

The daily ammonia production of C. crangon was 16 μmol NH3 · g −1 wet wt · day −1 in winter and 40 μmol in summer. A gross production of 12 μmol NH3 · m−2 · day −1 and 300–700 μmol μ m−2 · day−1, respectively, could be expected in the two ecosystems studied. This would account for 5% (winter) and 2–4% (summer) of the total NH+4 flux at the sediment-water interface. The contribution of the excretion of all macrofauna to the NH+4 flux from the sediment is discussed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号