首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodopsin forms nanoscale domains (i.e., nanodomains) in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates.  相似文献   

2.
An ordered membrane-cytoskeleton network in squid photoreceptor microvilli   总被引:6,自引:0,他引:6  
To study the organization of microvilli in the photoreceptor cells of an invertebrate. X-ray diffraction patterns were obtained from aldehyde-fixed squid retinas to a resolution of (40 Å)?1 and correlated with results from electron microscopy and sodium dodecyl sulphate/polyacrylamide gel electrophoresis. Squid photoreceptor microvilli are packed in extensive hexagonal arrays; in addition each microvillus has a hexagonal substructure. Image reconstruction from thin section electron micrographs shows that the microvilli are linked together with specialized membrane junctions at their neighbour contacts, and phosphotungstic acid-stained sections show a central cytoskeleton connected to the membrane by side-arms.The X-ray patterns also reveal two axial periodicities in the microvilli. A weak and diffuse (50 Å)?1 band is tentatively assigned to rhodopsin molecules ordered in the plane of the membrane. In addition, an arc at (85 Å)?1 is attributed to a cytoplasmic or extracellular structure.Sodium dodecyl sulphate/polyacrylamide gel electrophoresis of the isolated microvilli shows that the major component, rhodopsin, comprises about 50% of the total protein. There are two major detergent-insoluble polypeptides with molecular weights of 145,000 and 42,000. The 42,000 component is identified as actin by papain digestion fragment mapping.Cephalopod photoreceptors are highly sensitive to the polarization vector of linearly polarized light. In consequence, the linear rhodopsin chromophores must be aligned relative to the microvillar axes. The membrane junctions and cytoskeleton described here may provide a mechanism for maintaining this rhodopsin alignment.  相似文献   

3.
Supramolecular organization of rhodopsin in the photoreceptor membrane was investigated by small-angle neutron scattering method. The experiments, which were performed with mixtures of heavy/light water as solvent (contrast variation method), were aimed at obtaining information about the lipid and protein components of the photoreceptor disc membrane separately. It was shown that the packaging density of the rhodopsin molecules in the photoreceptor membrane was unusually high: the distance between the centers of the molecules was approximately 56 Å. The probability of the monomeric state of rhodopsin molecules in the photoreceptor membrane, according to the data obtained, is rather high.  相似文献   

4.
The studies reported are concerned with the functional consequences of the chemical modifications of the lysines and carboxyl-containing amino acids of bovine rhodopsin. The 10 non-active-site lysine residues of rhodopsin can be completely dimethylated and partially acetimidated (8-9 residues) with no loss in the ability of the proteins to activate the G protein when photolyzed or to regenerate with 11-cis-retinal. These modifications do not alter the net charge on the protein. Surprisingly, heavy acetylation of these lysines (eight to nine residues) with acetic anhydride, which neutralizes the positive charges of the lysine residues, yields a modified rhodopsin fully capable of activating the G protein and being regenerated. It is concluded that the non-active-site lysine residues of rhodopsin are not importantly and directly involved in interactions with the G protein during photolysis. However, this is not to say that they are unimportant in maintaining the tertiary structure of the protein because heavy modification of these residues by succinylation and trinitrophenylation produces proteins incapable of G protein activation, although the succinylated protein still regenerated. The active-site lysine of rhodopsin was readily modified and prevented from regenerating with 11-cis-retinal and with o-salicylaldehyde and o-phthalaldehyde/mercaptoethanol, two sterically similar aromatic aldehyde containing reagents which react by entirely different mechanisms. It is suggested that rhodopsin contains an aromatic binding site within its active-site region. Monoethylation, but not monomethylation, of the active-site lysine also prevented regeneration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Iodopsin can replace its chromophore (11-cis retinal) by added 9-cis retinal, resulting in the formation of isoiodopsin. NaBH4 bleaches iodopsin in the dark. In a relatively low concentration of digitonin, the scotopsin (the protein moiety of chicken rhodopsin) removes 11-cis retinal from isopsin in the iodopsin These facts suggests that the linkage of the chromophore to opsin in the iodopsin molecule (presumably a Schiff-base linkage) is accessible to these reagents, which is different from the situation in rhodopsin.  相似文献   

6.
A model for random cross-linking of identical monomers diffusing in a membrane was formulated to test whether rhodopsin's cross-linking behavior was quantitatively consistent with a monomeric structure. Cross-linking was performed on rhodopsin both in intact retinas and in isolated rod outer segment (ROS) membranes using the reagent glutaraldehyde. The distribution of covalent oligomers formed was analyzed by SDS-polyacrylamide gel electrophoresis and compared to predictions for the random model. A similar analysis was made for ROS membranes cross-linked by diisocyanatohexane and retinas cross-linked by cupric ion complexed with o-phenanthroline. Patterns of cross-linking produced by these three reagents are reasonably consistent with the monomer model. Glutaraldehyde was also used to cross-link the tetrameric protein aldolase in order to verify that cross-linking of a stable oligomer, under conditions comparable to those used for ROS, yielded the pattern predicted for a tetrameric protein having D2 symmetry. This pattern is markedly different from the one for a random-collision model. Moreover, a comparison of rates showed that aldolase cross-linking with glutaraldehyde is significantly faster than cross-linking of membrane-bound rhodopsin. It is concluded that rhodopsin is monomeric in dark-adapted photoreceptor membranes and that the observed cross-linking results from collisions between diffusing rhodopsin molecules.  相似文献   

7.
The role of sulfhydryl groups in the bleaching and synthesis of rhodopsin   总被引:5,自引:11,他引:5  
The condensation of retinene1 with opsin to form rhodopsin is optimal at pH about 6, a pH which favors the condensation of retinene1 with sulfhydryl rather than with amino groups. The synthesis of rhodopsin, though unaffected by the less powerful sulfhydryl reagents, monoiodoacetic acid and its amide, is inhibited completely by p-chloromercuribenzoate (PCMB). This inhibition is reversed in part by the addition of glutathione. PCMB does not attack rhodopsin itself, nor does it react with retinene1. Its action in this system is confined to the —SH groups of opsin. Under some conditions the synthesis of rhodopsin is aided by the presence of such a sulfhydryl compound as glutathione, which helps to keep the —SH groups of opsin free and reduced. By means of the amperometric silver titration of Kolthoff and Harris, it is shown that sulfhydryl groups are liberated in the bleaching of rhodopsin, two such groups for each retinene1 molecule that appears. This is true equally of rhodopsin from the retinas of cattle, frogs) and squid. The exposure of new sulfhydryl groups adds an important element to the growing evidence that relates the bleaching of rhodopsin to protein denaturation. The place of sulfhydryl groups in the structure of rhodopsin is still uncertain. They may be concerned directly in binding the chromophore to opsin; or alternatively they may furnish hydrogen atoms for some reductive change by which the chromophore is formed from retinene1. In the amperometric silver titration, the bleaching of rhodopsin yields directly an electrical variation. This phenomenon may have some fundamental connection with the role of rhodopsin in visual excitation, and may provide a model of the excitation process in general.  相似文献   

8.
Rhodopsin-G-protein interactions monitored by resonance energy transfer   总被引:1,自引:0,他引:1  
Resonance energy transfer measurements were implemented to monitor the specific interactions between G-protein and rhodopsin in phospholipid vesicles reconstituted with the purified proteins. Fluorescently labeled G-protein was extracted from bleached rod outer segments (ROS) reacted with several sulfhydryl reagents: N-(1-pyrenyl)maleimide (P), monobromobimane (B), 7-(diethylamino)-3-(4-maleimidylphenyl)-4-methylcoumarin (C), and N-(4-anilino-1-naphthyl)maleimide (A). Limited labeling of ROS, resulting in the modification of less than a single -SH residue per G-protein molecule and less than 0.2 residue per rhodopsin, did not impair the specific in situ interactions between rhodopsin and G-protein. This was demonstrated by preservation of their light-activated tight association and Gpp(NH)p binding and their fast dissociation with excess GTP. The distribution of fluorescent label among the three subunits of G-protein revealed a highly reactive -SH group in the gamma subunit accessible to labeling when G-protein was bound specifically to bleached rhodopsin. Recombination of purified fluorescent derivatives of G-protein with purified rhodopsin reconstituted in lipid vesicles restored the light-activated Gpp(NH)p binding to a level comparable to that measured with unlabeled G-protein. Similar observations were obtained with ROS depleted of peripheral proteins. Likewise, modification of up to two -SH groups per rhodopsin molecule with the fluorescent reagents did not affect the functional recombination of G-protein with rhodopsin in reconstituted lipid vesicles or in depleted ROS. Interactions between rhodopsin and G-protein were monitored by resonance energy transfer measurements, with the following fluorescent conjugates as donor/acceptor couples: P-rhodopsin/C-G-protein, P-rhodopsin/B-G-protein, and P-G-protein/C-rhodopsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Immunoblotting of isolated cell membrane fractions from ciliates Blepharisma japonicum and Stentor coeruleus with a polyclonal antibody raised against rhodopsin revealed one strong protein band of about 36 kDa, thought to correspond to protozoan rhodopsin. Inspection of both ciliates labeled with the same antibody using a confocal microscope confirmed the immunoblotting result and demonstrated the presence of these rhodopsin-like molecules localized within the cell membrane area. Immunoblot analysis of the ciliate membrane fractions resolved by two-dimensional gel electrophoresis identified two distinct 36 kDa spots at pIs of 4.5 and 7.0 for Blepharisma, and three spots at pIs of 4.4, 5.0 and 6.0 for Stentor, indicating a possible mixture of phosphorylated rhodopsin species in these cells. The obtained results suggest that both Blepharisma and the related ciliate Stentor contain within the cell membrane the rhodopsin-like proteins, which may be involved as receptor molecules in the sensory transduction pathway mediating motile photoresponses in these protists as in other species of lower eukaryota.  相似文献   

10.
Rhodopsin is phosphorylated in a light-dependent manner by a kinase intrinsic to the rod outer segment. We have used chromatofocusing to separate six phosphorylated species of rhodopsin and have recovered in the pH gradient fractions 60-80% of the initial phosphorylated sample loaded on the column. The isolated species of rhodopsin coincide with the species that are observed in isoelectric focusing gels in the pH range 6.1-4.7. Unphosphorylated rhodopsin focuses at a pI of 6.0. Two species having two phosphates per rhodopsin with isoelectric points of 5.45 and 5.40 have been isolated. The phosphate to rhodopsin ratios for the remaining species are 3.8, 5.0, 6.1, and 8.2 with isoelectric points of 5.16, 4.99, 4.85, and 4.73, respectively. The chromatofocusing profile suggests that there may be multiple forms of rhodopsin with the same number of phosphates among some of the other phosphorylated forms of rhodopsin.  相似文献   

11.
The disposition of polypeptide chain of ovine rhodopsin in the photoreceptor disc membrane was investigated by using two hydrophilic reagents, 3,5-di-[125I]iodo-4-diazobenzenesulphonate [( 125I]DDISA) and [14C]succinic anhydride. Both reagents were used to modify rhodopsin in intact disc membranes under conditions where no loss of A500 occurred. Reaction of [125I]DDISA with rhodopsin approached completion after 30 min. Binding was saturated at a 75-fold molar excess of reagent, which gave binding ratios of up to 2 mol/mol of rhodopsin. Proteolysis of rhodopsin, using Staphylococcus aureus V8 proteinase, yielded two membrane-bound fragments, both of which contained bound radioactive probe. Subsequent CNBr cleavage of these fragments produced five radiolabelled peptides which corresponded to the C-terminal region and cytoplasmic loops of rhodopsin. Similar studies with [14C]-succinic anhydride also gave binding ratios of up to 2 mol/mol of rhodopsin. Sequencing of the [14C]succinylated peptides identified the location of the reactive sites as lysine residues 66, 67, 141, 245, 248, 311, 325 and 339 in the polypeptide chain. Non-permeability of both probes was demonstrated by the absence of any radioactivity associated with the intradiscal N-terminal glycopeptide. Sonication of membranes in the presence of [125I]DDISA led to the incorporation of label in this peptide.  相似文献   

12.
R N Frank  S M Buzney 《Biochemistry》1975,14(23):5110-5117
Partial separation of protein kinase activity from rhodopsin in isolated bovine retinal photoreceptor outer segments was accomplished by mild ultrasonic treatment followed by ultracentrifugation. Residual kinase activity in the rhodopsin-rich sediment was destroyed by chemical denaturation which did not affect the spectral properties of the rhodopsin. The retinal outer segment kinase was found to be specific for rhodopsin, since in these preparations it alone of several bovine protein kinases was capable of phosphorylating rhodopsin in the light. The phosphorylation reaction apparently requires a specific conformation of the rhodopsin molecule since it is abolished by heat denaturation of rhodopsin, and it is greatly reduced or abolished by treatment of the visual pigment protein with potassium alum after the rhodopsin has been "bleached" by light. When kinase and rhodopsin or opsin fractions were prepared from dark-adapted and bleached outer segments and the resultant fractions were mixed in various combinations of bleached and unbleached preparations, the observed pattern of light-activated phosphorylation was consistent only with the interpretation that a conformational change in the rhodopsin molecule in the light exposes a site on the visual pigment protein to the kinase and ATP. These results rule out the possibility of a direct or indirect (rhodopsin-mediated) light activation of the kinase. Finally, phosphorylation of retinal outer segment protein in monochromatic lights of various wavelengths followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that both rhodopsin and the higher molecular weight visual pigment protein reported by several laboratories have the same action spectrum for phosphorylation. This result is consistent with the suggestion that the higher molecular weight species is a rhodopsin dimer.  相似文献   

13.
Anabaena sensory rhodopsin (ASR) is a novel microbial rhodopsin recently discovered in the freshwater cyanobacterium Anabaena sp. PCC7120. This protein most likely functions as a photosensory receptor as do the related haloarchaeal sensory rhodopsins. However, unlike the archaeal pigments, which are tightly bound to their cognate membrane-embedded transducers, ASR interacts with a soluble cytoplasmic protein analogous to transducers of animal vertebrate rhodopsins. In this study, infrared spectroscopy was used to examine the molecular mechanism of photoactivation in ASR. Light adaptation of the pigment leads to a phototransformation of an all-trans/15-anti to 13-cis/15-syn retinylidene-containing species very similar in chromophore structural changes to those caused by dark adaptation in bacteriorhodopsin. Following 532 nm laser-pulsed excitation, the protein exhibits predominantly an all-trans retinylidene photocycle containing a deprotonated Schiff base species similar to those of other microbial rhodopsins such as bacteriorhodopsin, sensory rhodopsin II, and Neurospora rhodopsin. However, no changes are observed in the Schiff base counterion Asp-75, which remains unprotonated throughout the photocycle. This result along with other evidence indicates that the Schiff base proton release mechanism differs significantly from that of other known microbial rhodopsins, possibly because of the absence of a second carboxylate group at the ASR photoactive site. Several conformational changes are detected during the ASR photocycle including in the transmembrane helices E and G as indicated by hydrogen-bonding alterations of their native cysteine residues. In addition, similarly to animal vertebrate rhodopsin, perturbations of the polar head groups of lipid molecules are detected.  相似文献   

14.
D R McCaslin  C Tanford 《Biochemistry》1981,20(18):5207-5212
When detergent-solubilized proteins interact with hydrophobic or amphiphilic molecules in the presence of detergent micelles, the solubility of the latter species in the micelles must be included in both thermodynamic and kinetic treatments. In this paper, we derive equations which describe the distribution of species present at equilibrium for a system in which a detergent-solubilized protein binds a hydrophobic (or amphiphilic) ligand. We have applied the formalism developed in this paper to the reaction describing the formation of rhodopsin from its apoprotein and 11-cis-retinal. Qualitatively, the results demonstrate that a significant portion of the observed decrease in the extent of recombination for rhodopsin solubilized in either sodium cholate or Tween 80 may be attributed to the partition of retinal into detergent micelles and that a detergent-induced protein denaturation need not be invoked to explain the data. We also discuss results for rhodopsin solubilized in a nonionic detergent (octaethylene glycol n-dodecyl ether) in which the detergent is clearly causing irreversible loss of the capability to recombine with 11-cis-retinal.  相似文献   

15.
Porphyrinmaleimides were synthesized and characterized. The thiol-containing amino acid L-cysteine reacted with 58% yield with these porphyrins to form bioconjugate adducts. The new thiol-active reagents were labeled cytoplasmic cysteine 140 and 316 in rhodopsin (Rh), a G protein coupled receptor (GPCR).  相似文献   

16.
Ascano M  Robinson PR 《Biochemistry》2006,45(7):2398-2407
Deactivation of the vertebrate photopigment rhodopsin is achieved through a two-step process. Rhodopsin is first phosphorylated by rhodopsin kinase and subsequently deactivated by the binding of the regulatory protein arrestin or its splice variant, p44. Although much is known about the overall differences between arrestin and p44 binding to different rhodopsin species (photolyzed versus unphotolyzed and/or phosphorylated versus unphosphorylated), the exact role of p44 during phototransduction remains to be fully elucidated. Our current study addresses this question by identifying structural differences between arrestin and p44 and characterizing the interaction between the negatively charged rhodopsin tail and either p44 or arrestin. Our results demonstrate that arrestin and p44 bind differently to different phosphorylated rhodopsin species and that this may be due to a structural difference between p44's and arrestin's basal states. This difference offers a potential regulatory mechanism that could regulate p44 and arrestin binding and, as a result, regulate the kinetics of the rod's light response.  相似文献   

17.
Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts   总被引:2,自引:0,他引:2  
C Pande  A Pande  K T Yue  R Callender  T G Ebrey  M Tsuda 《Biochemistry》1987,26(16):4941-4947
We report here the resonance Raman spectra of octopus rhodopsin and its photoproducts, bathorhodopsin and acid metarhodopsin. These studies were undertaken in order to make comparisons with the well-studied bovine pigments, so as to understand the similarities and the differences in pigment structure and photochemical processes between vertebrates and invertebrates. The flow method was used to obtain the Raman spectrum of rhodopsin at 13 degrees C. The bathorhodopsin spectrum was obtained by computer subtraction of the spectra containing different photostationary mixtures of rhodopsin, isorhodopsin, hypsorhodopsin, and bathorhodopsin, obtained at 12 K using the pump-probe technique and from measurements at 80 K. Like their bovine counterparts, the Schiff base vibrational mode appears at approximately 1660 cm-1 in octopus rhodopsin and the photoproducts, bathorhodopsin and acid metarhodopsin, suggesting a protonated Schiff base linkage between the chromophore and the protein. Differences between the Raman spectra of octopus rhodopsin and bathorhodopsin indicate that the formation of bathorhodopsin is associated with chromophore isomerization. This inference is substantiated by the chromophore chemical extraction data which show that, like the bovine system, octopus rhodopsin is an 11-cis pigment, while the photoproducts contain an all-trans pigment, in agreement with previous work. The octopus rhodopsin and bathorhodopsin spectra show marked differences from their bovine counterparts in other respects, however. The differences are most dramatic in the structure-sensitive fingerprint and the HOOP regions. Thus, it appears that although the two species differ in the specific nature of the chromophore-protein interactions, the general process of visual transduction is the same.  相似文献   

18.
We have used site-specific heavy-atom labelling and X-ray diffraction to localize single amino acid residues in the cytoplasmic domain of the integral membrane protein rhodopsin, the dim-light photoreceptor of retinal vertebrate rod cells. Two-dimensional orthorhombic crystals of the space group p22(1)2(1) (a=59.5(+/-1) A and b=82.7(+/-1.5) A) were produced from detergent-solubilized, partially delipidated rhodopsin. To obtain milligram amounts of two-dimensional crystals, which are required for X-ray diffraction, the yield of the crystalline material was significantly increased by reconstitution of rhodopsin in the presence of cholesterol (1:2 to 1:10 mol/mol) and by adding polar organic solvents to the dialysis buffer. The native cysteine residues C140 and C316 were then selectively labelled with mercury using the sulphydryl-specific reagent p-chloromercuribenzoate (1.6-2.1 mol Hg per mol rhodopsin). The labelling did not affect the unit cell dimensions. Optical absorption spectra of labelled and native two-dimensional rhodopsin crystals showed the characteristic 11-cis-retinal peak at 498 nm, which corresponds to the dark state of rhodopsin. The in-plane position of the mercury label was calculated at 9.5 A resolution from the intensity differences in the X-ray diffraction patterns of labelled and native crystals using Fourier difference methods and the phase information from electron crystallography. The label positions were in excellent agreement with the positions of C140 at the cytoplasmic end of helix 3 and of C316 in the cytoplasmic helix 8 recently obtained from three-dimensional rhodopsin crystals. Whereas these high-resolution diffraction studies were performed under cryogenic conditions (100 K), our results were obtained at room temperature with fully hydrated membranes and in the absence of loop-loop crystal contacts. To study the structural changes of the cytoplasmic loops involved in activation and signal transduction, our more physiological conditions offer important advantages. Furthermore, the localization of C316 is the first direct proof that the electron density on top of helix 1 observed by cryo-electron microscopy is a part of the C-terminal loop. Our approach is of particular interest for investigations of other membrane proteins, for which 3D crystals are not available. Structural constraints from heavy-atom labels at strategic sites enable the assignment of a position in the amino acid sequence to features visible in a low-resolution density map and the study of conformational changes associated with different functional states of the membrane protein.  相似文献   

19.
We examined the pattern of DNA organization at the larval cuticle gene complex 44D of Drosophila melanogaster, using micrococcal nuclease and the 1,10-phenanthroline-cuprous complex. The initial cleavage patterns obtained with both reagents exhibited "gaps" at the positions of each of the genes examined, as well as at a pseudogene sequence contained within the complex. An additional gap for which no gene exists was observed for both patterns. The cleavage pattern obtained with micrococcal nuclease was unaltered, at a level of resolution of +/- 50 base pairs, in a mutant containing a transposable element. Analysis of the sequence data from this 5.5-kilobase gene cluster indicated that the sequence per se, and not the general base composition, is a dominant factor in determining the patterns observed.  相似文献   

20.
The possibility that protein kinase C is involved in phototransduction by phosphorylating rhodopsin was explored in situ and in vitro. Pretreatment of intact retinas with phorbol myristate acetate markedly increased the light-dependent phosphorylation of rhodopsin, with the greatest effects observed at lower light levels. Phorbol myristate acetate treatment did not affect rhodopsin phosphorylation in retinas not exposed to light, suggesting that protein kinase C modulates the phosphorylation state of rhodopsin in a light-dependent manner. Limited proteolysis of rhodopsin phosphorylated in situ indicates that protein kinase C modifies rhodopsin on a domain distinct from that recognized by rhodopsin kinase. In vitro, protein kinase C purified from bovine retinas phosphorylated unbleached and bleached rhodopsin. Our results are consistent with protein kinase C phosphorylating unbleached rhodopsin in response to low light, suggesting that protein kinase C plays a role in light adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号