首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Apoptosis, or programmed cell death, is a vital cellular process responsible for causing cells to self-terminate at the end of their useful life. Abrogation of this process is commonly linked to cancer, and rapid detection of apoptosis in vitro is vital to the discovery of new anti-cancer drugs. In this paper, we describe the application of the electrical phenomenon dielectrophoresis for detecting apoptosis at very early stages after drug induction, on the basis of changes in electrophysiological properties. Our studies have revealed that K562 (human myelogenous leukemia) cells show a persistent elevation in the cytoplasmic conductivity occurring as early as 30 minutes following exposure to staurosporine. This method therefore allows a far more rapid detection method than existing biochemical marker methods.  相似文献   

2.
We investigated the effect of intracellular glutathione (GSH) levels on Natural Killer-mediated apoptosis in cisplatin-resistant K562 cells. K562/B6 and K562/C9 are cisplatin-resistant K562 cells less susceptible to lysis by natural killer cells. Cisplatin-resistant K562 cells did not present the apoptotic pattern of DNA fragmentation as it was observed for their maternal counterparts. K562/B6 and K562/C9 cell lines produce 1.6- and 1.9-times more GSH than K562 cells. Treatment of both cell lines with D,L-buthionine-(S,R)-sulfoximine (BSO, a gamma-glutamyl cysteine synthetase inhibitor) decreased GSH levels and augmented cell death induced by NK cells via a necrotic rather than an apoptotic process. Proliferating cell nuclear antigen (PCNA) expression was elevated in cisplatin-resistant K562 subclones, and the reduction of GSH levels after treatment with BSO decreased the expression of PCNA. These results suggest that the GSH level affects the NK cell-mediated cell death of cisplatin-resistant K562 cells by inducing necrosis rather than apoptosis.  相似文献   

3.
The participation of proteasome in the programmed cells death is now extensively investigated. Studies using selective inhibitors of proteasomes have provided a direct evidence of both pro- and anti-apoptotic functions of proteasomes. Such opposite roles of 26S proteasomes in regulation of apoptosis may be defined by the proliferative state of cell. The induction of apoptosis in K562 cells by diethylmaleate was used as a model to investigate changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes undergoing the programmed cell death. Here we have shown that proteasomes isolated from the cytoplasm of control and diethylmaleate treated K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. It has been shown for the first time that proteolytic activity of 26S proteasomes is decreased, and endoribonuclease activity of 26S proteasomes is affected under diethylmaleate action on K562 cells. Treatment of K562 cells with an inductor of apoptosis--diethylmaleate--leads to modification of a proteasomal subunit (zeta/alpha5) associated with RNase activity of proteasomes. These data suggest the subunit composition and enzymatic activities of 26S proteasomes to be changed in K562 cells undergoing apoptosis, and that specific subtypes of 26S proteasomes participate in execution of programmed death of these cells.  相似文献   

4.
以药物敏感型细胞株K562/S和耐药型细胞株K562/A02为对象.观察原癌基因Bcl-2的表达量在两种细胞中的差异,以及神经酰胺作为一个新的脂质第二信使诱导细胞凋亡的能力,并利用酪氨酸激酶抑制剂genistein,酪氨酸磷酸酯酶抑制剂vanadate,观察酪氨酸可逆磷酸化与细胞凋亡间的关系.结果显示:在K562/A02中Bcl-2的表达量明显高于K562/S;外源性神经酰胺能成功地诱导K562/S,K562/A02细胞凋亡,凋亡细胞具有典型的形态学改变和DNA“Ladder”形成,FCM检测出现凋亡细胞峰,但在同样的诱导条件下,K562/S细胞凋亡明显高于K562/A02细胞.FCM检测genistein能显著改变这两种细胞生长周期,但细胞阻滞于G2/M期,便对神经酰胺诱导的细胞凋亡无明显作用,vanadate单独对细胞地明显作用,但与神经酰胺共同作用能明显提高细胞凋亡率.以上结果表明在药物诱导的细胞调亡中Bcl-2基因起重要作用,神经酰胺能诱导K562/S和K562/A02细胞调亡.  相似文献   

5.
Natural killer (NK) cells target and kill tumor cells by direct anti-tumor cytotoxicity. NK lytic-associated molecule (NKLAM) is a protein involved in this cytolytic function. Acting as an E3 ubiquitin ligase, NKLAM binds to and ubiquitinates a novel protein, uridine-cytidine kinase like-1 (UCKL-1), targeting it for degradation. However, UCKL-1’s function in tumor cell survival and NK cell cytotoxicity is unknown. UCKL-1’s homology to uridine kinases and over expression in tumor cells suggests a role for UCKL-1 in tumor growth and/or survival. We propose that NKLAM and UCKL-1 interact in the tumor cell, where degradation of UCKL-1 leads to increased tumor cell apoptosis. Here we use RNA interference to downregulate UCKL-1 expression in K562 erythroleukemia cells. It was seen that downregulation of UCKL-1 initiated apoptosis and slowed the cell cycle, resulting in lower growth in the small interfering UCKL-1 RNA treated K562 cell culture. In addition, the chemotherapeutic agent staurosporine was seen to be more effective in inducing cell death by apoptosis in UCKL-1 depleted K562 cells compared with controls. We also found that UCKL-1 depleted K562 cells were more susceptible to NK mediated cytolysis than controls. These results indicate a role for UCKL-1 in tumor cell survival and suggest possible therapeutic potential of UCKL-1 inhibitors in cancer treatment.  相似文献   

6.
The induction of apoptosis in K562 cells by doxorubicin (DR) was used as a model to investigate changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes in cells undergoing the programmed death. Here we have shown for the first time that proteasomes isolated from the nuclei of control and induced K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. It has been shown for the first time that trypsin- and chymotrypsin-like, and the endoribonuclease activities of nuclear 26S proteasomes are affected under influence of DR on K562 cells. Treatment of K562 cells with DR leads to modification of zeta/alpha5 and iota/alpha6 proteasomal subunits associated with RNase activity of proteasomes. These findings confirm our hypothesis about so-called reprogramming of nuclear proteasomes population in undergoing apoptosis K562 cells which is manifested by changes in proteasomal composition, phosphorylation state, and enzymatic activities during the programmed cell death.  相似文献   

7.
7-hydroxystaurosporine (UCN-01) is a more selective protein kinase C inhibitor than staurosporine. UCN-01 exhibits antitumor activity in experimental tumor models and is presently in clinical trials. Our study reveals that human myeloblastic leukemia HL60 and K562 and colon carcinoma HT29 cells undergo internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis after UCN-01 treatment. These three cell lines lack functional p53, and K562 and HT29 cells are usually resistant to apoptosis. DNA fragmentation in HT29 and K562 cells occurred after 1 day of treatment while it took less than 4 h in HL60 cells. Cycloheximide prevented UCN-01-induced DNA fragmentation in HT-29 cells, but not in HL60 and K562 cells, suggesting that macromolecular synthesis is selectively required for apoptotic DNA fragmentation in HT29 cells. UCN-01-induced DNA fragmentation was preceded by activation of cyclin B1/cdc2 kinase. Further studies in HL60 cells showed that UCN-01-induced apoptosis was associated with degradation of CPP32, PARP, and lamin B and that the inhibitor of caspases (ICE/CED-3 cysteine proteases), Z-VAD-FMK, and the serine protease inhibitor, DCI, protected HL60 cells from UCN-01-induced DNA fragmentation. However, only DCI and TPCK, but not Z-VAD-FMK, inhibited DNA fragmentation in the HL60 cell-free system, suggesting that serine protease(s) may play a role in the execution phase of apoptosis in HL60 cells treated with UCN-01. Z-VAD-FMK and DCI also inhibited apoptosis in HT29 cells. These data demonstrate that the protein kinase C inhibitor and antitumor agent, UCN-01 is a potent apoptosis inducer in cell lines that are usually resistant to apoptosis and lack p53 and that caspases and probably serine proteases are activated during UCN-01-induced apoptosis.  相似文献   

8.
Human peripheral blood T-lymphocytes, normally resting at the G0 phase, were stimulated with phytohemagglutinin (PHA) and interleukin-2 (IL-2) to induce the cell division cycle. The cells were examined at 24-h intervals for up to 96 h by flow cytometry to determine cell cycle distributions and by electrorotation to determine dielectric properties. The average membrane specific capacitance was found to vary from 12 (+/-1.5) mF/m2 prior to stimulation to 10 (+/-1.5) and 16 (+/-3.5) mF/m2 at 24 and 48 h after stimulation, respectively, and to remain unchanged up to 96 h after stimulation. Scanning electron microscopy studies of the cells revealed an increased complexity in cell membrane morphology following stimulation, suggesting that the observed change in the membrane capacitance was dominated by the alteration of cell surface structures. The average electrical conductivity of the cell interior decreased from approximately 1.1 S/m prior to stimulation to approximately 0.8 S/m at 24 h after stimulation and showed little change thereafter. The average dielectric permittivity of the cell interior remained almost unchanged throughout the course of the cell stimulation. The percentage of T-lymphocytes in the S and G2/M phases increased from approximately 4% prior to stimulation to approximately 11 and approximately 34% at 24 and 48 h after stimulation, respectively. The large change in membrane specific capacitance between the 24 and 48 h time period coincided with the large alteration in the cell cycle distribution where the S and G2/M populations increased by approximately 23%. These data, together with an analysis of the variation of the membrane capacitance during the cell cycle based on the cell cycle-dependent membrane lipid accumulation, show that there is a correlation between membrane capacitance and cell cycle phases that reflects alterations in the cell plasma membrane.  相似文献   

9.
To assess the role of Bcl-X(L) and its splice derivative, Bcl-X(S), in staurosporine-induced cell death, we used a dopaminergic cell line, MN9D, transfected with bcl-xL (MN9D/Bcl-X(L)), bcl-xS (MN9D/Bcl-X(S)), or control vector (MN9D/Neo). Only 8.6% of MN9D/Neo cells survived after 24 h of 1 microM staurosporine treatment. Caspase activity was implicated because a caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-fmk), attenuated staurosporine-induced cell death. Bcl-X(L) rescued MN9D cells from death (89.4% viable cells), whereas Bcl-X(S) had little or no effect. Bcl-X(L) prevented morphologically apoptotic changes as well as cleavage of poly(ADP-ribose)polymerase (PARP) induced by staurosporine. It is interesting that a small Bax-immunoreactive protein appeared 4-8 h after PARP cleavage in MN9D/Neo cells. The appearance of the small Bax-immunoreactive protein, however, may be cell type-specific as it was not observed in PC12 cells after staurosporine treatment. The sequential cleavage of PARP and the appearance of the small Bax-immunoreactive protein in MN9D cells were blocked either by Z-VAD-fmk or by Bcl-X(L). Thus, our present study suggests that Bcl-X(L) but not Bcl-X(S) prevents staurosporine-induced apoptosis by inhibiting the caspase activation that may be directly or indirectly responsible for the appearance of the small Bax-immunoreactive protein in some types of neurons.  相似文献   

10.
Here we have studied changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes in cells undergoing the programmed cell death. Apoptosis in proerythroleukemic K562 cells was induced by glutathione-depleting agent, diethylmaleate (DEM). We have shown for the first time that proteasomes isolated from the nuclei of control and induces K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. We observed trypsin- and chymotrypsin-like activities on nuclear proteasomes and the specificity of proteasomal nucleolysis of several individual messenger RNAs (c-fos and c-myc) to be changed under effect of DEM on K562 cells. Treatment of K562 cells with DEM leads to modification of zeta/alpha5 and iota/alpha6 proteasomal subunits associated with RNAse activity of proteasomes. These findings confirm our hypothesis about so-called reprogramming of nuclear proteasome population in undergoing apoptosis K562 cells which is manifested by the changes in proteasomal composition, phosphorylation state, and enzymatic activities during the programmed cell death.  相似文献   

11.
Natural products from plants such as flavonoids are potential drugs to overcome multidrug resistance (MDR) in cancer treatments. However, their modes of action are still unclear. In this study, the effects of quercetin on mitochondrial membrane potential (DeltaPsim) change as well as quercetin's ability to induce apoptosis and inhibit Pgp-mediated efflux of 99mTc-MIBI in K562/adr cells were investigated. Quercetin exhibits cytotoxicity against erythroleukemic cells: IC50 are 11.0 +/- 2.0 micromol/L and 5.0 +/- 0.4 micromol/L for K562 and K562/adr, respectively. Quercetin induces cell death via apoptosis in both K562 and K562/adr cells and does not inhibit Pgp-mediated efflux of 99mTc-MIBI. Quercetin (10 micromol/L, 3 h) and etoposide (100 micromol/L, 24 h) induce similar levels of apoptosis in K562 and K562/adr cells. Quercetin induces an increase followed by a decrease in |DeltaPsim| value depending on its concentration. A decrease in the |DeltaPsim| value is associated with an increase in the percentage of early apoptotic cells. It is clearly shown that quercetin results in a spontaneous DeltaPsim change during apoptotic induction. Therefore, quercetin is potentially an apoptotic-inducing agent, which reacts at the mitochondrial level.  相似文献   

12.
A variety of chemotherapeutic agents induce cell death via apoptosis. We had shown previously that gemcitabine (2,2-difluorodeoxycytidine) induced an atypical apoptosis in BG-1 human ovarian cancer cells; therefore, further studies were conducted to characterize more precisely gemcitabine-induced apoptosis in BG-1 cells compared to a general inducer of apoptosis, staurosporine. BG-1 cells exposed to 0.5, 1.0 and 10 M gemcitabine for 8 h, or staurosporine (1.0 M) for 6 h, exhibited high molecular weight DNA fragmentation (50 kbp); however, only staurosporine treatment produced internucleosomal DNA fragments (200 bp) in a laddered pattern on the agarose gel. Staurosporine (1.0 M) rapidly induced phosphatidylserine plasma membrane translocation that increased linearly with time as measured by annexin V-FITC binding, and similar kinetics were observed for caspase activation by staurosporine in BG-1 cells. In contrast, 10 M gemcitabine increased phosphatidylserine expression in a small fraction of cells (5–10%) vs. untreated controls over the course of 48 h and significant caspase activity was detected within 12 h of drug exposure. Time-lapse video microscopy of BG-1 cells exposed to 1.0 M staurosporine or 10 M gemcitabine for up to 72 h showed that the morphologic changes and kinetics of cell death induced by these agents differed significantly. We also evaluated the apoptosis induced by paclitaxel (a mitotic poison) and cisplatin (an agent not dependent on cell cycle functions) in BG-1 cells by these methods because these drugs are used clinically to treat ovarian cancer. Our findings demonstrate that the kinetics of apoptotic cell death induced by gemcitabine and other chemotherapeutic agents should be taken into account when designing treatment strategies for ovarian cancer.  相似文献   

13.
Recent studies have suggested that apoptosis and necrosis share common features in their signaling pathway and that apoptosis requires intracellular ATP for its mitochondrial/apoptotic protease-activating factor-1 suicide cascade. The present study was, therefore, designed to examine the role of intracellular energy levels in determining the form of cell death in cardiac myocytes. Neonatal rat cardiac myocytes were first incubated for 1 h in glucose-free medium containing oligomycin to achieve metabolic inhibition. The cells were then incubated for another 4 h in similar medium containing staurosporine and graded concentrations of glucose to manipulate intracellular ATP levels. Under ATP-depleting conditions, the cell death caused by staurosporine was primarily necrotic, as determined by creatine kinase release and nuclear staining with ethidium homodimer-1. However, under ATP-replenishing conditions, staurosporine increased the percentage of apoptotic cells, as determined by nuclear morphology and DNA fragmentation. Caspase-3 activation by staurosporine was also ATP dependent. However, loss of mitochondrial transmembrane potential (DeltaPsi(m)), Bax translocation, and cytochrome c release were observed in both apoptotic and necrotic cells. Moreover, cyclosporin A, an inhibitor of mitochondrial permeability transition, attenuated staurosporine-induced apoptosis and necrosis through the inhibition of DeltaPsi(m) reduction, cytochrome c release, and caspase-3 activation. Our data therefore suggest that staurosporine induces cell demise through a mitochondrial death signaling pathway and that the presence of intracellular ATP favors a shift from necrosis to apoptosis through caspase activation.  相似文献   

14.
3-hydrogenwadaphnin (3-HK) is a new daphnane-type diterpene ester isolated from Dendrostellera lessertii with strong anti-tumoral activity in animal models and in cultures. Here, prolonged effects of this new agent on proliferation and viability of several different cancerous cell lines were evaluated. Using [(3)H]thymidine incorporation, it was found that the drug inhibited cell proliferation and induced G1/S cell cycle arrest in leukemic cells 24 h after a single dose treatment. The cell viability of Jurkat cells was also decreased by almost 10 %, 31 % and 40 % after a single dose treatment (7.5 nM) at 24, 48 and 72 h, respectively. The drug-treated cells were stained with acridine orange/ ethidium bromide to document the chromatin condensation and DNA fragmentation. These observations were further confirmed by detection of DNA laddering pattern in the agarose gel electrophoresis of the extracted DNA from the treated cells. Treatment of K562 cells with the drug at 7.5, 15 and 30 nM caused apoptosis in 25 %, 45 % and 65 % of the cells, respectively. Exogenous addition of 25-50 microM guanosine and/or deoxyguanosine to the cell culture of the drug-treated cells restored DNA synthesis, released cell arrest at G1/S checkpoint and decreased the apoptotic cell death caused by the drug. These observations were not made using adenosine. However, the drug effects on K562 cells were potentiated by hypoxanthine. Based on these observations, perturbation of GTP metabolism is considered as one of the main reasons for apoptotic cell death by 3-HK.  相似文献   

15.
We studied the effect of 2-(6-(2-thieanisyl)-3(Z)-hexen-1,5-diynyl)aniline(THDA), a newly developed anti-cancer agent, on cell proliferation, cell cycle progression, and induction of apoptosis in K562 cells. THDA was found to inhibit the growth of K562 cells in a time-and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest and apoptosis in K562 cells following 24 h exposure to THDA. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a time-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that THDA did not change the steady-state levels of cyclin B1, cyclin D3 and Cdc25C, but decreased the protein levels of Cdk1, Cdk2 and cyclin A. THDA also caused a marked increase in apoptosis, which was associated with activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose) polymerase. These molecular alterations provide an insight into THDA-caused growth inhibition, G2/M arrest and apoptotic death of K562 cells.  相似文献   

16.
17.
Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.  相似文献   

18.
19.
目的初步探讨低浓度丰加霉素对人白血病K562细胞集落形成抑制作用的机制。方法甲基纤维素集落形成实验检测低浓度丰加霉素对人白血病K562细胞集落形成能力的影响;CCK-8法检测低浓度丰加霉素对K562细胞的生长抑制率;AnnexinV/PI双染流式细胞仪检测低浓度丰加霉素作用下的K562细胞凋亡率;PI单染流式细胞仪检测药物作用后细胞的周期分布改变;Western免疫印迹和实时定量PCR检测周期相关分子表达水平变化。结果低浓度丰加霉素对人白血病K562细胞具有较强的集落形成抑制作用;可明显抑制K562细胞的生长,呈时间一剂量依赖性;尽管短时间(48h)的药物处理仅出现轻度的细胞凋亡和周期阻滞,但10nmol/L和30nmol/L的丰加霉素长时间(7d)作用后,K562细胞G0/G1期比例分别是(62.3±1.7)%和(76.9±0.7)%,与对照组(38.9±1.1)%相比差异具有高度统计学意义(P〈0.01);低浓度丰加霉素长时间作用后诱导K562细胞周期相关分子P16蛋白水平和转录水平的高表达。结论丰加霉素在低浓度,长时间作用于人白血病K562细胞后,具有较强的集落形成抑制和生长抑制作用,此作用可能与诱导细胞周期相关分子p16高表达,导致细胞G0/G1期阻滞有关。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号