首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five monoclonal antibodies which are reactive to early antigens of Epstein-Barr virus have been produced by using somatic cell hybridization techniques. The specificity of the monoclonal antibodies to early antigens was demonstrated by indirect immunofluorescence, which showed that the antigens were localized to the nucleus of early antigen-induced Raji cells. Additional indirect immunofluorescence studies showed that like patient antisera to diffuse-staining early antigen, the monoclonal antibodies gave positive staining reactions after methanol fixation. One of the antibodies, 1150-4, was positive by the anti-complement immunofluorescence technique but differed with Epstein-Barr virus-associated nuclear antigen-positive patient sera in that it only stained induced cells. Different fixation methods were found to alter dramatically the appearance of the nuclear staining reactions produced by the monoclonal antibodies. Immunoprecipitation and immunoblot experiments revealed that monoclonal antibodies 1108-1 and 1129-1 recognized two polypeptides of 55,000 and 50,000 daltons (p55;50), 1173-6 and 1180-2 recognized just p50, and 1150-4 identified a 65,000-dalton nuclear protein. Immunobiochemical characterization of these viral antigens showed that p55 is a phosphoprotein, and p55;50 has strong DNA-binding activity preferentially to single-stranded DNA. Elucidation of the role of these nuclear proteins in Epstein-Barr virus infection and the events associated with Epstein-Barr virus-directed lymphocyte transformation may provide significant information on the pathogenicity of this important human virus.  相似文献   

2.
The Epstein-Barr virus-soluble (S) antigen extracted from RAJI cells was characterized by sucrose gradient centrifugation, gel filtration, and ion-exchange chromatography. The sedimentation coefficient was estimated to be 8.5S corresponding to a molecular weight of 180,000. The S antigen binds to DEAE-A25 ion exchanger from which it can be eluted with 0.3 M NaCl in Tris buffer (pH 7.2). All fractions which contained complement-fixing S antigen also inhibited the anticomplement immunofluorescence reaction as used to detect the Epstein-Barr virus-associated nuclear antigen. These results are consistent with the hypothesis that the S and Epstein-Barr virus-associated nuclear antigens are either a single antigen or that both activities are present on the same molecule.  相似文献   

3.
Partial purification of the Epstein-Barr virus nuclear antigen(s)   总被引:11,自引:0,他引:11  
The Epstein-Barr virus nuclear antigen (EBNA) is speculated to be involved in cell transformation by the virus. Studies on the molecular properties of EBNA, however, have yielded conflicting results. In this study, three Epstein-Barr virus(EBV)-induced antigens were isolated and purified from extracts prepared from Raji cells. These antigens were able to block the anticomplement immunofluorescence reaction, indicating that all three were related to EBNA. The soluble antigen was found wholly in the cytosol fraction. An EBV-induced nuclear antigen I was found both in the cytosol and the nucleus. The EBV-induced nuclear antigen II was found associated with the chromatin. The soluble antigen and the nuclear antigen I were separated and partially purified using phosphocellulose chromatography. Each was further purified 1,400-fold with respect to the whole cell state by chromatography on CL-Sepharose 6B followed by blue dextran-Sepharose. subunit molecular weights of 70,000 were determined for each of these antigens, both in the crude and purified state, by radioimmunoelectrophoresis and gel filtration. The nuclear antigen II was purified 2,500-fold using hydroxylapatite, CL-Sepharose 6B, and blue dextran-Sepharose chromatographies. This antigen displayed two subunits by radioimmunoelectrophoresis with molecular weights of 65,000 and 70,000. Although all antigens shared similar molecular weights, the extent of their homology remains to be determined.  相似文献   

4.
A B-lymphoid cell line was established from a normal gorilla. The cells contained Epstein-Barr virus-related antigens, and herpesvirus particles were demonstrated by electron microscopy. DNA-DNA reassociation kinétics revealed 30 to 40% hybridization to Epstein-Barr virus with 50 genomes per cell. Examination of the viral nuclear antigen with gorilla sera showed this to be a unique isolate termed Herpesvirus gorilla. H. gorilla transformed gibbon B-lymphocytes in vitro.  相似文献   

5.
A double indirect immunoenzymatic staining was developed for the simultaneous visualization of Epstein-Barr virus-induced early antigens and virus capsid antigens in P3HR1 lymphoblastoid cell line. The double immunocytochemical staining was performed with a four-stage and a two-stage procedure employing human sera and monoclonal antibodies against Epstein-Barr virus-induced antigens, followed by the addition of specific alkaline phosphatase and peroxidase labeled antisera. The selection of substrates yielding reaction products of contrasting colours enabled the observer to distinguish cells expressing Epstein-Barr virus capsid antigens (blue) from cells expressing Epstein-Barr virus early antigens (brown).  相似文献   

6.
Summary A double indirect immunoenzymatic staining was developed for the simultaneous visualization of Epstein-Barr virus-induced early antigens and virus capsid antigens in P3HR1 lymphoblastoid cell line.The double immunocytochemical staining was performed with a four-stage and a two-stage procedure employing human sera and monoclonal antibodies against Epstein-Barr virus-induced antigens, followed by the addition of specific alkaline phosphatase and peroxidase labeled antisera.The selection of substrates yielding reaction products of contrasting colours enabled the observer to distinguish cells expressing Epstein-Barr virus capsid antigens (blue) from cells expressing Epstein-Barr virus early antigens (brown).  相似文献   

7.
Summary A Burkitt's lymphoma (BL) patient who sustained remission for more than 14 years after chemotherapy was monitored by means of serial serum samplings. The sera were titrated for antibodies against the Epstein-Barr virus (EBV)-associated cell membrane antigen (MA), viral capsid antigens (VCA), early antigen complex (EA R/D), and nuclear antigen (EBNA), and also for reactivity in the antibody-dependent cellular cytotoxicity (ADCC) test. The initial serological profile corresponded to that of most BL patients with active disease. During remission, it changed to resemble that of normal persons with persistent, latent EBV infection, at least qualitatively. The prognostic and biological implications of the titer levels and their changes are discussed.Abbreviations ADCC antibody-dependent cellular cytotoxicity - BCG Bacillus Calmette-Guérin - BL Burkitt's lymphoma - D diffuse component of EA - EA Epstein-Barr virus-induced early antigens - EBNA Epstein-Barr virus-specific nuclear antigen - EBV Epstein-Barr virus - KCC Kenya Cancer Council Registry - MA EBV-associated cell membrane antigen complex - NK natural killer - R restricted component of EA - VCA EB viral capsid antigen complex  相似文献   

8.
9.
By means of the protein immunoblot technique, the Epstein-Barr virus (EBV) nuclear antigen (EBNA) could be identified in a variety of EBV-transformed cell lines with anti-EBNA-positive sera from normal donors. The molecular weight of EBNA expressed in each of the cell lines varied between 70,000 and 75,000 and was dependent upon the strain of infecting virus. In contrast, 15 of 21 sera from patients with rheumatoid arthritis identified antigens in addition to EBNA. The most prominent of these antigens had molecular weights of 110,000 to 115,000 and 92,000. All of the EBV genome-positive cell lines except for QIMR-GOR and cell lines containing the P3HR-1 virus expressed these antigens. The antigens were not present in the EBV genome-negative Ramos and BJAB cell lines, nor were they identified with EBV seronegative sera, indicating that they were EBV related. There was no direct correlation between the presence of antibodies in sera to EBNA, viral capsid antigen or early antigen, and reaction with the 92,000-molecular-weight antigen in immunoblots, indicating that this antigen was distinct from previously described EBV-related antigens.  相似文献   

10.
An Epstein-Barr virus (EBV)-infected fibroblast line, designated DSEK, was spontaneously established from synovial tissue of a patient with rheumatoid arthritis (RA). DSEK cells expressed EBV nuclear antigens EBNA-1 and EBNA-2 and latent membrane protein LMP-1. Cell surface markers of DSEK cells were similar to those of EBV-negative fibroblast clones derived from synoviocytes and were negative for lymphocyte and macrophage markers. DSEK cells expressed CD44, CD58, and HLA-DR antigens and spontaneously produced interleukin-10 basic fibroblast growth factor and transforming growth factor beta1. These results indicate that rheumatoid synoviocytes can be a target for EBV infection and suggest that EBV may play a role in the pathogenesis of RA.  相似文献   

11.
The DNA-binding domain of Epstein-Barr virus nuclear antigen 1 was found by hydroxyl radical footprinting to protect backbone positions on one side of its DNA-binding site. The guanines contacted in the major groove by the DNA-binding domain of Epstein-Barr virus nuclear antigen 1 were identified by methylation protection. No difference was found in the interaction of the DNA-binding domain of Epstein-Barr virus nuclear antigen 1 with tandemly repeated and overlapping binding sites.  相似文献   

12.
The ability of B cells, B blasts, and macrophages to present Epstein-Barr virion antigens to autologous T cells and trigger their capacity to inhibit Epstein-Barr virus-induced B-cell transformation was tested. Macrophages were as efficient as B cells and B blasts in presenting the virus to T lymphocytes. This function required antigen processing, because it was inhibited by chloroquine treatment and by fixation of the antigen-presenting cells immediately after viral exposure but not 18 h later. T cells exposed to the purified Epstein-Barr virus envelope antigen gp350 coupled to immunostimulating complexes also showed inhibitory function. These results suggest that recognition of processed virion antigens elicits the generation of T-cell-mediated inhibition of Epstein-Barr virus-induced B-cell transformation.  相似文献   

13.
Three continuous lymphoblastoid cell lines, 2 productive of nucleocapsids and 1 nonproductive line, were studied for their content of Epstein-Barr viral (EBV) antigens during transition from stationary to logarithmic phase growth. As a preliminary step, viable cells were separated from degenerating ones in discontinuous gradients of serum albumin. Viral capsid antigens were found in both living and dead cells of the 2 producer lines; however, complement fixing (CF) antigens and nuclear antigen were detected only in viable cell subpopulations. The content of antigen detectable in extracts of viable cells by complement fixation remained constant in replicating and resting cultures; further, all viable cells of the 3 lines demonstrated intranuclear antigen by anticomplement immunofluorescence in all stages of growth. In contrast, the proportion of cells with viral capsid antigen in the producer lines increased 7- to 24-fold following entry of resting populations into the phase of exponential growth.The results suggest that expression of viral capsid antigens is discontinuous and is initiated in response to events in log phase, possibly DNA synthesis or mitosis. Expression of the complement fixing and nuclear antigens in continuous in viable cells. These findings emphasize the intimate relationship of the CF and nuclear antigen to the transformed state and suggest that study of this antigen complex will shed light on the mechanisms of lymphocyte transformation by EBV.  相似文献   

14.
The hematologic and immunologic responses to infection with either the Epstein-Barr virus alone or infection with Epstein-Barr virus and Plasmodium knowlesi were studied using common marmosets (Callithrix jacchus). The assays performed included complete blood cell counts, determinations of natural killer cell activity, and determinations of antibody titers to Epstein-Barr virus early antigen, virus capsid antigen and the nuclear antigen. While no animal showed signs of lymphoproliferative disease, it was found that animals infected with Epstein-Barr virus became positive for early antigen, virus capsid antigen and nuclear antigen at low levels. No difference in antibody titers between Epstein-Barr virus infected animals and co-infected animals was observed. An increase also was found in the number of leukocytes in all groups, and an increase in natural killer cells following infection with Epstein-Barr virus. Some depression in natural killer cells was observed in the co-infected animals when compared to Epstein-Barr virus infected animals.  相似文献   

15.
A 65,000-dalton (65K) antigen found in Raji cells by fluoroimmunoelectrophoresis and radioimmunoelectrophoresis has been identified as an Epstein-Barr virus nuclear antigen (EBNA). This identification is based on the following evidence. The 65K antigen is detected in Raji cells but not in three Epstein-Barr virus (-) human B cell lines. It is not detected with EBNA (-) sera. The 65K antigen is found predominantly in the nucleus and co-elutes with EBNA during partial purification by DNA-Sepharose and Blue Dextran-Sepharose chromatography. Finally, the partially purified 65K antigen is an effective absorbant of EBNA antibody as measured in an anticomplement immunofluorescence assay. Antigens with molecular weights of 72, 70, and 73K have been detected in B95-8, P3HR-1, and Namalwa cells, respectively. These antigens are the likely homologues of the 65K Raji EBNA. In addition, an Epstein-Barr virus-associated, 81K DNA-binding antigen has been detected in both B95-8 and Raji cells.  相似文献   

16.
A dual antibody probing technique that permitted a color-coded identification of polypeptides representing different classes of Epstein-Barr virus (EBV) antigens as well as differentiation of the polypeptides induced by different herpesviruses in the same Western blot was developed. When the nitrocellulose sheet was probed first with monoclonal antibody against EBV early antigen diffuse component (EA-D) and then stained with 4-chloro-1-naphthol, four polypeptides specific for EA-D were identified by purple bands. Subsequently, the same nitrocellulose sheet was reprobed with human serum containing antibodies against EBV early antigen, viral capsid antigen, and nuclear antigen and stained with 3,3'-diaminobenzidine. Several brown bands corresponding to early, viral capsid, and nuclear antigen polypeptides were detected. The dual antibody probing technique was used in an analysis to differentiate polypeptides resulting from either EBV or herpes simplex virus infection, either in cells infected by individual virus or in a cell line dually infected by both viruses. On the basis of different colored bands in different lanes of the same gel, 20 polypeptides with molecular weights ranging from 31,000 to 165,000 were identified as herpes simplex virus-specific proteins. These results suggested that the dual antibody probing technique may be applicable in clinical diagnosis for detecting antigens and antibodies derived from different pathogens.  相似文献   

17.
18.
The Epstein-Barr virus nuclear antigen 3A is expressed in the nuclei of cells latently infected by the Epstein-Barr virus. We have previously shown that a fragment of 265 amino acids was essential for the proper subcellular localization of the Epstein-Barr virus nuclear antigen 3A. As described in this paper, we have used deletion analysis to identify a decapeptide, RDRRRNPASR, which is essential for nuclear localization of this protein. Furthermore, this decapeptide is a functional nuclear localization signal as demonstrated by its ability to target expression of beta-galactosidase in the nuclei of transfected cells.  相似文献   

19.
Inhibition of polyamine synthesis by 2-difluoromethylornithine (DFMO) treatment had no apparent effect on the initial manifestation of Epstein-Barr virus (EBV) infection in human B lymphocytes, because the expression of EBV-encoded nuclear antigens (EBNA) occurred normally. However, many subsequent steps in the transformation process were inhibited by DFMO treatment. These include cellular DNA synthesis and immunoglobulin (IgM, IgG and IgA) synthesis and secretion. Consequently, DFMO treatment blocked the progression of the transformation process of EBV-infected B lymphocytes. EBV-carrying marmoset B lymphocytes (B95-8 cells) were also blocked in their DNA synthesis when treated with DFMO. At variance with other DNA synthesis inhibitors, which induce virus production very effectively in B95-8 cells, DFMO caused no increase in the number of cells expressing the early antigens associated with the lytic cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号