首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
An amiloride-sensitive, Ca2+-activated nonselective cation (NSC) channel in the apical membrane of fetal rat alveolar epithelium plays an important role in stimulation of Na+ transport by a beta adrenergic agonist (beta agonist). We studied whether Ca2+ has an essential role in the stimulation of the NSC channel by beta agonists. In cell-attached patches formed on the epithelium, terbutaline, a beta agonist, increased the open probability (P o ) of the NSC channel to 0.62 ± 0.07 from 0.03 ± 0.01 (mean ±se; n= 8) 30 min after application of terbutaline in a solution containing 1 mm Ca2+. The P o of the terbutaline-stimulated NSC channel was diminished in the absence of extracellular Ca2+ to 0.26 ± 0.05 (n= 8). The cytosolic Ca2+ concentration ([Ca2+] c ) in the presence and absence of extracellular Ca2+ was, respectively, 100 ± 6 and 20 ± 2 nm (n= 7) 30 min after application of terbutaline. The cytosolic Cl concentration ([Cl] c ) in the presence and absence of extracellular Ca2+ was, respectively, 20 ± 1 and 40 ± 2 mm (n= 7) 30 min after application of terbutaline. The diminution of [Ca2+] c from 100 to 20 nm itself had no significant effects on the P o if the [Cl] c was reduced to 20 mm; the P o was 0.58 ± 0.10 at 100 nm [Ca2+] c and 0.55 ± 0.09 at 20 nm [Ca2+] c (n= 8) with 20 mm [Cl] c in inside-out patches. On the other hand, the P o (0.28 ± 0.10) at 20 nm [Ca2+] c with 40 mm [Cl] c was significantly lower than that (0.58 ± 0.10; P < 0.01; n= 8) at 100 nm [Ca2+] c with 20 mm [Cl] c , suggesting that reduction of [Cl] c is an important factor stimulating the NSC channel. These observations indicate that the extracellular Ca2+ plays an important role in the stimulatory action of beta agonist on the NSC channel via reduction of [Cl] c . Received: 11 August 2000/Revised: 4 December 2000  相似文献   

5.
The malignant neoplasm is characterized by progres-sive growth and the ability to disseminate tumor cellsbeyond the boundaries of the parent tumor. Tumor in-vasion and metastasis are important aspects of tumorprogression and the formation of tumor and metastasis is aprincipal contributing factor to cancer morbidity andmortality. During this process urokinase (urokinase-typeplasminogen activator, uPA) and its receptor (uPAR) playan important role. uPAR is a 55–60 kD glycoprotein which is a…  相似文献   

6.
7.
Skeletal muscle myosin phenotype (i.e., the predominance in the muscle of a particular isoform or isoforms of myosin heavy chains (MyHC)) determines the properties of muscle, such as contraction speed and fatigue. The aim of this study was to identify the functional relationship between the decrease of the nitric oxide (NO) content, the GSK-3β phosphorylation (leading to the GSK-3β activation), the NFATc1 amount in the muscle nuclei, and the MyHC I(β) isoform expression in the rat soleus muscle under gravitational unloading. Male Wistar rats were divided into five groups: the vivarium control group; the group of animals with a 7-day hind limb suspension receiving placebo; the group of animals with a hind limb suspension receiving a NO donor (L-arginine); the group of animals with a hind limb suspension receiving a NO donor and a NO-synthase inhibitor (L-NAME); and the group of animals with a hind limb suspension receiving a GSK-3β inhibitor. We have shown that a 7-day unloading leads to a NO content decrease in the soleus muscle, and this effect is prevented by L-arginine administration. In addition, administration of L-arginine blocks the GSK-3β phosphorylation decrease, NFATc1 export from the muscle nuclei, and MyHC I(β) expression decrease caused by unloading. The L-arginine effect in each case can be blocked by the NO-synthase inhibitor. Administration of the GSK-3β inhibitor prevents the unloading-induced NFATc1 export from the muscle nuclei and a decrease of the MyHC I(β) expression. The prevention of the MyHC I(β) expression decrease and the NFATc1 export from the nucleus by the selective GSK-3β inhibition confirms the hypothesis on the NO influence on the MyHC I(β) expression and the NFATc1 export from the nucleus via the GSK-3β phosphorylation decrease. Thus, the NO level decrease in the rat soleus muscle in unloading leads to the GSK-3β activation, which in turn, promotes the NFATc1 export from the nucleus and stabilization of the fast myosin phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号