首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This phylogenetic study focuses on a subset of the species in Elymus—specifically, the endemic Asian tetraploids presumed to combine the St genome from Pseudoroegneria with the Y genome from an unknown donor. The primary goals were to (1) determine whether the St and Y genomes are derived from phylogenetically distinct donors; (2) identify the closest relative, and potentially the likely donor, of the Y genome; and (3) interpret variation among StStYY species in terms of multiple origins and/or introgression. The goals were addressed using phylogenetic analyses of sequences from three low-copy nuclear genes: phosphoenolpyruvate carboxylase, β-amylase, and granule-bound starch synthase I. Data sets include 16 StStYY individuals representing nine species, along with a broad sample of representatives from most of the monogenomic (i.e., non-allopolyploid) genera in the tribe. To briefly summarize the results: (1) the data clearly support an allopolyploid origin for the Asian tetraploids, involving two distinct donors; (2) the Y genome was contributed by a single donor, or multiple closely-related donors; (3) the phylogenetic position of the Elymus Y genome varies among the three trees and its position is not strongly supported, so the identity of the donor remains a mystery; and (4) conflicts among the gene trees with regard to the St-genome sequences suggest introgression involving both Elymus and Pseudoroegneria.  相似文献   

3.
The ultimate goal of synthetic biology is to build customized cells or organisms to meet specific industrial or medical needs. The most important part of the customized cell is a synthetic genome. Advanced genomic writing technologies are required to build such an artificial genome. Recently, the partially-completed synthetic yeast genome project represents a milestone in this field. In this mini review, we briefly introduce the techniques for de novo genome synthesis and genome editing. Furthermore, we summarize recent research progresses and highlight several applications in the synthetic genome field. Finally, we discuss current challenges and future prospects.  相似文献   

4.
Wang X  Chen W  Huang Y  Sun J  Men J  Liu H  Luo F  Guo L  Lv X  Deng C  Zhou C  Fan Y  Li X  Huang L  Hu Y  Liang C  Hu X  Xu J  Yu X 《Genome biology》2011,12(10):R107-14

Background

Clonorchis sinensis is a carcinogenic human liver fluke that is widespread in Asian countries. Increasing infection rates of this neglected tropical disease are leading to negative economic and public health consequences in affected regions. Experimental and epidemiological studies have shown a strong association between the incidence of cholangiocarcinoma and the infection rate of C. sinensis. To aid research into this organism, we have sequenced its genome.

Results

We combined de novo sequencing with computational techniques to provide new information about the biology of this liver fluke. The assembled genome has a total size of 516 Mb with a scaffold N50 length of 42 kb. Approximately 16,000 reliable protein-coding gene models were predicted. Genes for the complete pathways for glycolysis, the Krebs cycle and fatty acid metabolism were found, but key genes involved in fatty acid biosynthesis are missing from the genome, reflecting the parasitic lifestyle of a liver fluke that receives lipids from the bile of its host. We also identified pathogenic molecules that may contribute to liver fluke-induced hepatobiliary diseases. Large proteins such as multifunctional secreted proteases and tegumental proteins were identified as potential targets for the development of drugs and vaccines.

Conclusions

This study provides valuable genomic information about the human liver fluke C. sinensis and adds to our knowledge on the biology of the parasite. The draft genome will serve as a platform to develop new strategies for parasite control.  相似文献   

5.
《Genomics》2021,113(3):1272-1280
Here, we present a draft genome of the tapeworm Dipylidium caninum (family Dipylidiidae) and compare it with other cestode genomes. This draft genome of D. caninum is 110 Mb in size, has a repeat content of ~13.4% and is predicted to encode ~10,000 protein-coding genes. We inferred excretory/secretory molecules (representing the secretome), other key groups of proteins (including peptidases, kinases, phosphatases, GTPases, receptors, transporters and ion-channels) and predicted potential intervention targets for future evaluation. Using 144 shared single-copy orthologous sequences, we investigated the genetic relationships of cestodes for which nuclear genomes are available. This study provides first insights into the molecular biology of D. caninum and a new resource for comparative genomic and genetic explorations of this and other flatworms.  相似文献   

6.

Background

Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented.

Principal Findings

We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before).

Conclusions

Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.  相似文献   

7.
Genome sequencing projects have been initiated for a wide range of eukaryotes. A few projects have reached completion, but most exist as draft assemblies. As one of the main reasons to sequence a genome is to obtain its catalog of genes, an important question is how complete or completable the catalog is in unfinished genomes. To answer this question, we have identified a set of core eukaryotic genes (CEGs), that are extremely highly conserved and which we believe are present in low copy numbers in higher eukaryotes. From an analysis of a phylogenetically diverse set of eukaryotic genome assemblies, we found that the proportion of CEGs mapped in draft genomes provides a useful metric for describing the gene space, and complements the commonly used N50 length and x-fold coverage values.  相似文献   

8.
Taylor MS  Semple CA 《Genome biology》2002,3(9):reviews1025.1-reviews10256
The publication of the Fugu rubripes draft genome sequence will take this fish from culinary delicacy to potent tool in deciphering the mysteries of human genome function.  相似文献   

9.
10.
The genome sequence of Manduca sexta was recently determined using 454 technology. Cufflinks and MAKER2 were used to establish gene models in the genome assembly based on the RNA-Seq data and other species' sequences. Aided by the extensive RNA-Seq data from 50 tissue samples at various life stages, annotators over the world (including the present authors) have manually confirmed and improved a small percentage of the models after spending months of effort. While such collaborative efforts are highly commendable, many of the predicted genes still have problems which may hamper future research on this insect species. As a biochemical model representing lepidopteran pests, M. sexta has been used extensively to study insect physiological processes for over five decades. In this work, we assembled Manduca datasets Cufflinks 3.0, Trinity 4.0, and Oases 4.0 to assist the manual annotation efforts and development of Official Gene Set (OGS) 2.0. To further improve annotation quality, we developed methods to evaluate gene models in the MAKER2, Cufflinks, Oases and Trinity assemblies and selected the best ones to constitute MCOT 1.0 after thorough crosschecking. MCOT 1.0 has 18,089 genes encoding 31,666 proteins: 32.8% match OGS 2.0 models perfectly or near perfectly, 11,747 differ considerably, and 29.5% are absent in OGS 2.0. Future automation of this process is anticipated to greatly reduce human efforts in generating comprehensive, reliable models of structural genes in other genome projects where extensive RNA-Seq data are available.  相似文献   

11.
The dynamic activity of transposable elements (TEs) contributes to the vast diversity of genome size and architecture among plants. Here, we examined the genomic distribution and transposition activity of long terminal repeat retrotransposons (LTR-RTs) in Arabidopsis thaliana (Ath) and three of its relatives, Arabidopsis lyrata (Aly), Eutrema salsugineum (Esa), and Schrenkiella parvula (Spa), in Brassicaceae. Our analyses revealed the distinct evolutionary dynamics of Gypsy retrotransposons, which reflects the different patterns of genome size changes of the four species over the past million years. The rate of Gypsy transposition in Aly is approximately five times more rapid than that of Ath and Esa, suggesting an expanding Aly genome. Gypsy insertions in Esa are strictly confined to pericentromeric heterochromatin and associated with dramatic centromere expansion. In contrast, Gypsy insertions in Spa have been largely suppressed over the last million years, likely as a result of a combination of an inherent molecular mechanism of preferential DNA removal and purifying selection at Gypsy elements. Additionally, species-specific clades of Gypsy elements shaped the distinct genome architectures of Aly and Esa.  相似文献   

12.
13.
In the year 2018, the world witnessed the finale of the race to sequence the genome of the world’s most widely grown crop, the common wheat. Wheat has been known to bear a notoriously large and complicated genome of a polyploidy nature. A decade competition to sequence the wheat genome initiated with a single consortium of multiple countries, taking a conventional strategy similar to that for sequencing Arabidopsis and rice, became ferocious over time as both sequencing technologies and genome assembling methodologies advanced. At different stages, multiple versions of genome sequences of the same variety (e.g., Chinese Spring) were produced by several groups with their special strategies. Finally, 16 years after the rice genome was finished and 9 years after that of maize, the wheat research community now possesses its own reference genome. Armed with these genomics tools, wheat will reestablish itself as a model for polyploid plants in studying the mechanisms of polyploidy evolution, domestication, genetic and epigenetic regulation of homoeolog expression, as well as defining its genetic diversity and breeding on the genome level. The enhanced resolution of the wheat genome should also help accelerate development of wheat cultivars that are more tolerant to biotic and/or abiotic stresses with better quality and higher yield.  相似文献   

14.
The development of novel leishmanicidal agents that are capable of being replaced by the available therapeutic options has become a priority. In the present study, the synthesis and leishmanicidal activity of a series of 5-(nitroheteroaryl-2-yl)-1,3,4-thiadiazole derivatives are described. All compounds appeared to be potent anti-leishmanial agents against both promastigote and amastigote forms of Leishmania major (L. major). Amongst the synthesized compounds, 2-([1,4′-bipiperidin]-1′-yl)-5-(5-nitrofuran-2-yl)-1,3,4-thiadiazole (IIa) and 1-(5-(1-methyl-5-nitro-1H-imidazole-2-yl)-1,3,4-thiadiazol-2-yl)-4-(piperidine-1-yl) piperidine (IIc) are the most effective. Infection index was statistically declined in the presence of all compounds. The analysis of redox-related factors revealed that exposure of L. major cells to IIa and IIc led to an increase in reactive oxygen species (ROS). Furthermore, two compounds were able to increase ROS and NO levels in infected macrophages in a dose-independent manner. In addition, we showed that these compounds induced cell death in promastigotes. Altogether, our results indicated the anti-leishmanial potential of IIa and IIc is mediated by apoptosis through an imbalance in the redox system resulting in the elevation of ROS. This new class of compound seems to hold great promise for the development of new and useful anti-leishmanial agents.  相似文献   

15.
To evaluate phylogeny of tetraploid with St genome, phylogenetic analyses of RNA polymerase II (RPB2), a member of the nuclear gene family encoding the second largest subunit, were performed. Our results showed that: (1) Roegneria magnicaespes and Roegneria alashanica are related to Pseudoroegneria. (2) Roegneria elytrigioides has StStStSt genomes and should therefore be classified as Pseudoroegneria elytrigioides. (3) Pseudoroegneria tauri and Pseudoroegneria deweyi which have StStPP genomes should be transferred to Douglasdeweya and be renamed as Douglasdeweya wangii and Douglasdeweya deweyi, respectively. (4) Pseudoroegneria geniculata ssp. scythica is related to Pseudoroegneria and Lophyrum, and hence should be identified as a species of Trichopyrum. (5) Pseudoroegneria libanotica might be a parental donor for Elytrigia caespitosa rather than Elytrigia caespitosa ssp. nodosa. It is unreasonable to recognize El. caespitosa ssp. nodosa as a subspecies of El. caespitosa. (6) Interspecific and intergeneric variations are detected in St genome of these tetraploid species.  相似文献   

16.
17.
《Genomics》2021,113(6):4173-4183
Cherries are stone fruits and belong to the economically important plant family of Rosaceae with worldwide cultivation of different species. The ground cherry, Prunus fruticosa Pall., is an ancestor of cultivated sour cherry, an important tetraploid cherry species. Here, we present a long read chromosome-level draft genome assembly and related plastid sequences using the Oxford Nanopore Technology PromethION platform and R10.3 pore type. We generated a final consensus genome sequence of 366 Mb comprising eight chromosomes. The N50 scaffold was ~44 Mb with the longest chromosome being 66.5 Mb. The chloroplast and mitochondrial genomes were 158,217 bp and 383,281 bp long, which is in accordance with previously published plastid sequences. This is the first report of the genome of ground cherry (P. fruticosa) sequenced by long read technology only. The datasets obtained from this study provide a foundation for future breeding, molecular and evolutionary analysis in Prunus studies.  相似文献   

18.
Addition of 5-bromo-2′,3′-O-isopropylidene-5′-O-trityluridine (2) in pyridine to an excess of 2-lithio-1,3-dithiane (3) in oxolane at 78° gave (6R)-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene -5′-O-trityluridine (4), (5S,6S)-5-bromo-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene-5′-O-trityluridine (5), and its (5R) isomer 6 in yields of 37, 35, and 10%, respectively. The structure of 4 was proved by Raney nickel desulphurization to (6S)-5,6-dihydro-2′,3′-O-isopropylidene-6-methyl-5′-O-trityluridine (7) and by acid hydrolysis to give D-ribose and (6R)-5,6-dihydro-6-(1,3-dithian-2-yl)uracil (9). Treatment of 4 with methyl iodide in aqueous acetone gave a 30&%; yield of (R,S)-5,6-dihydro-6-formyl-2′,3′-O-isopropylidene-5′-O-trityl-uridine (10), characterized as its semicarbazone 11. Both 5 and 6 gave 4 upon brief treatment with Raney nickel. Both 5 and 6 also gave 6-formyl-2′,3′-O-isopropylidene-5′- O-trityluridine (12) in ~41%; yield when treated with methyl iodide in aqueous acetone containin- 10%; dimethyl sulfoxide. A by-product, identified as the N-methyl derivative (13) of 12 was also formed in yields which varied with the amount of dimethyl sulfoxide used. Reduction of 12 with sodium borohydride, followed by deprotection, afforded 6-(hydroxymethyl)uridine (17), characterized by hydrolysis to the known 6-(hydroxymethyl)uracil (18). Knoevenagel condensation of a mixture of the aldehydes 12 and 13 with ethyl cyanoacetate yielded 38%; of E- (or Z-)6-[(2-cyano-2-ethoxycarbonyl)ethylidene]-2′,3′-O-isopropylidene-5′-O-trityluridine (19) and 10%; of its N-methyl derivative 20. Hydrogenation of 19 over platinum oxide in acetic anhydride followed by deprotection gave R (or S)-6-(3-amino-2-carboxypropyl)uridine (23).  相似文献   

19.
《Insect Biochemistry》1990,20(2):185-193
We have assessed the potential for molecular genetic analysis of the red flour beetle, Tribolium castaneum, to augment the high resolution genetic analysis demonstrated for this organism by Beeman et al. (Dev. Biol.33, 196–209, 1989). The genome size, 0.21 pg, the long period interspersion pattern of repetitive elements and a low methyl-cytosine content indicate molecular studies should be straight-forward. We constructed a genomic library and isolated clones containing RPS14, a small, highly conserved, near single copy ribosomal protein gene. We found three RPS14 clones in a screen of four genome equivalents, suggesting our library is representative of the genome. We also demonstrated the use of an RFLP, identified by the RPS14 clone, in genetic mapping.  相似文献   

20.
The proximity of the mitochondrial genome to the respiratory chain, a major source of ROS (radical oxygen species), makes mtDNA more vulnerable to oxidative damage than nuclear DNA. Mitochondrial BER (base excision repair) is generally considered to be the main pathway involved in the prevention of oxidative lesion-induced mutations in mtDNA. However, we previously demonstrated that the increased frequency of mitochondrial Olir mutants in an ogg1Δ strain, lacking the activity of a crucial mtBER glycosylase, is reduced in the presence of plasmids encoding Msh1p, the mitochondrial homologue of the bacterial mismatch protein MutS. This finding suggested that Msh1p might be involved in the prevention of mitochondrial mutagenesis induced by oxidative stress. Here we show that a double mutant carrying the msh1-R813W allele, encoding a variant of the protein defective in the ATP hydrolysis activity, combined with deletion of SOD2, encoding the mitochondrial superoxide dismutase, displays a synergistic effect on the frequency of Olir mutants, indicating that Msh1p prevents generation of oxidative lesion-induced mitochondrial mutations. We also show that double mutants carrying the msh1-R813W allele, combined with deletion of either OGG1 or APN1, the latter resulting in deficiency of the Apn1 endonuclease, exhibit a synergistic effect on the frequency of respiration-defective mutants having gross rearrangements of the mitochondrial genome. This suggests that Msh1p, Ogg1p and Apn1p play overlapping functions in maintaining the stability of mtDNA. In addition, we demonstrate, using a novel ARG8m recombination assay, that a surplus of Msh1p results in enhanced mitochondrial recombination. Interestingly, the mutant forms of the protein, msh1p-R813W and msh1p-G776D, fail to stimulate recombination. We postulate that the Msh1p-enhanced homologous recombination may play an important role in the prevention of oxidative lesion-induced rearrangements of the mitochondrial genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号