首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The calculations of the electronic structure of fifth-coordinated ferroporphyrin-imidazole complexes modeling alpha- and beta-subunits in desoxyhemoglobin and desoxymyoglobin are made using the interative extended Hückel method. The features of the electronic structure of the model complexes resulting from the stereochemical differences of the active site are studied and compared. Theoretical calculations of the M?ssbauer parameters of model complexes are made and compared with experimental data. The results show that basic features of the M?ssbauer parameters are qualitatively confirmed by the theoretical analysis. The necessity of the accounting of the stereochemical and electronic structure nonequivalence of nonidentical subunits in tetrameric desoxyhemoglobins during the M?ssbauer spectra approximation is also confirmed.  相似文献   

4.
Two classes of molecules inhibit the catalytic subunit (C) of the cyclic AMP-dependent protein kinase (cAPK), the heat-stable protein kinase inhibitors (PKIs) and the regulatory (R) subunits. Basic sites on C, previously identified as important for R/C interaction in yeast TPKI and corresponding to Lys213, Lys217, and Lys189 in murine Cα, were replaced with either Ala or Thr and characterized for their kinetic properties and ability to interact with RI and PKI. rC(K213A) and rC(K217A) were both defective in forming holoenzyme with RI but were inhibited readily with PKI. This contrasts with rC(R133A), which is defective in binding PKI but not RI (Wen & Taylor, 1994). Thus, the C-subunit employs two distinct electrostatic surfaces to achieve high-affinity binding with these two types of inhibitory molecules even though all inhibitors share a common consensus site that occupies the active site cleft. Unlike TPK1, mutation of Lys189 had no effect. The mutant C subunits that were defective in binding RI, rC(K213A) and rC(K217A), were then paired with three RI mutants, rRI(D140A), rRI(E143A), and rRI(D258A), shown previously to be defective in recognition of C. Although the mutations at Asp140 and Asp258 in RI were additive with respect to the C mutations, rC(K213A) and rRI(E143A) were compensatory, thus identifying a specific electrostatic interaction site between RI and C. The results are discussed in terms of the RI and C crystal structures and the sequence homology between the yeast and mammalian enzymes.  相似文献   

5.
Specific binding of protein kinase CK2 catalytic subunits to tubulin   总被引:2,自引:0,他引:2  
Protein kinase CK2 is composed of two regulatory beta-subunits and two catalytic alpha- or alpha'-subunits. To analyse these subunits individually we generated antibodies against unique peptides derived from the alpha-, alpha'- and beta-subunit. Immunofluorescence studies with these antibodies revealed the presence of all three CK2 subunits in the cytoplasm and weakly in the nucleus with strong signals around the nuclear membrane. Double staining experiments revealed a co-localisation of all three subunits with tubulin. A direct association between the CK2 alpha- and the alpha'-subunit and tubulin was confirmed by co-immunoprecipitation experiments as well as by Far Western analysis. There was no binding of the CK2 beta-subunit to tubulin. Thus, with tubulin we have identified a new binding partner specific for the catalytic subunits of CK2.  相似文献   

6.
NF-kappaB is sequestered in the cytoplasm by the inhibitory IkappaB proteins. Stimulation of cells by agonists leads to the rapid phosphorylation of IkappaBs leading to their degradation that results in NF-kappaB activation. IKK-1 and IKK-2 are two direct IkappaB kinases. Two recently identified novel IKKs are IKK-i and TBK-1. We have cloned, expressed, and purified to homogeneity recombinant human (rh)IKK-i and rhTBK-1 and compared their enzymatic properties with those of rhIKK-2. We show that rhIKK-i and rhTBK-1 are enzymatically similar to each other. We demonstrate by phosphopeptide mapping and site-specific mutagenesis that rhIKK-i and rhTBK-1 are phosphorylated on serine 172 in the mitogen-activated protein kinase kinase activation loop and that this phosphorylation is necessary for kinase activity. Also, rhIKK-i and rhTBK-1 have differential peptide substrate specificities compared with rhIKK-2, the mitogen-activated protein kinase kinase activation loop of IKK-2 being a more favorable substrate than the IkappaBalpha peptide. Finally, using analogs of ATP, we demonstrate unique differences in the ATP-binding sites of rhIKK-i, rhTBK-1, and rhIKK-2. Thus, although these IKKs are structurally similar, their enzymatic properties may provide insights into their unique functions.  相似文献   

7.
8.
Salvi M  Sarno S  Marin O  Meggio F  Itarte E  Pinna LA 《FEBS letters》2006,580(16):3948-3952
The acronym CK2 denotes a highly pleiotropic Ser/Thr protein kinase whose over-expression correlates with neoplastic growth. A vexed question about the enigmatic regulation of CK2 concerns the actual existence in living cells of the catalytic (alpha and/or alpha') and regulatory beta-subunits of CK2 not assembled into the regular heterotetrameric holoenzyme. Here we take advantage of novel reagents, namely a peptide substrate and an inhibitor which discriminate between the holoenzyme and the catalytic subunits, to show that CK2 activity in CHO cells is entirely accounted for by the holoenzyme. Transfection with individual subunits moreover does not give rise to holoenzyme formation unless the catalytic and regulatory subunits are co-transfected together, arguing against the existence of free subunits in CHO cells.  相似文献   

9.
A hit-to-lead optimisation programme was carried out on the thiophenecarboxamide high throughput screening hits 1 and 2 resulting in the discovery of the potent and orally bioavailable IKK-2 inhibitor 22.  相似文献   

10.
Integration host factor (IHF) is a heterodimeric protein from Escherichia coli which specifically binds to an asymmetric consensus sequence. We have isolated the individual subunits of IHF, HimA and HimD, and show that an active IHF protein can be reconstituted from these subunits. The HimA and HimD polypeptides alone are capable of specifically recognizing the same ihf sequence. The mobilities of the protein-DNA complexes in a gel-retardation assay suggest that the proteins bind as homodimers. The stability of the HimD-DNA complex is approximately 100-fold lower than that of the IHF-DNA complex. The HimA-DNA complex is even less stable and is only observed when a large excess of HimA is used. This instability is possibly due to the inability of HimA to form stable homodimers. By domain swapping between HimA and HimD, we have constructed an IHF fusion protein which has the putative DNA-binding domains of only HimA. This fusion protein forms stable dimers and makes specific protein-DNA complexes with a high efficiency. A comparable fusion protein with only the DNA-binding domains of HimD forms less stable complexes, suggesting that sequence-specific contacts between IHF and the ihf consensus are mainly provided by the HimA subunit.  相似文献   

11.
KCNK subunits have two pore-forming P domains and four predicted transmembrane segments. To assess the number of subunits in each pore, we studied external proton block of Kcnk3, a subunit prominent in rodent heart and brain. Consistent with a pore-blocking mechanism, inhibition was dependent on voltage, potassium concentration, and a histidine in the first P domain (P1H). Thus, at pH 6.8 with 20 mm potassium half the current passed by P1H channels was blocked (apparently via two sites approximately 10% into the electrical field) whereas channels with an asparagine substitution (P1N) were fully active. Furthermore, pore blockade by barium was sensitive to pH in P1H but not P1N channels. Although linking two Kcnk3 subunits in tandem to produce P1H-P1H and P1N-P1N channels bearing four P domains did not alter these attributes, the mixed tandems P1H-P1N and P1N-P1H were half-blocked at pH approximately 6.4, apparently via a single site. This implicates a dimeric structure for Kcnk3 channels with two (and only two) P1 domains in each pore and argues that P2 domains also contribute to pore formation.  相似文献   

12.
The ability of the cytoplasmic, full-length C-terminus of the beta 2-adrenergic receptor (BAC1) expressed in Escherichia coli to act as a functional domain and substrate for protein phosphorylation was tested. BAC1 was expressed at high-levels, purified, and examined in solution as a substrate for protein phosphorylation. The mobility of BAC1 on SDS-PAGE mimics that of the native receptor itself, displaying decreased mobility upon chemical reduction of disulfide bonds. Importantly, the C-terminal, cytoplasmic domain of the receptor expressed in E. coli was determined to be a substrate for phosphorylation by several candidate protein kinases known to regulate G-protein-linked receptors. Mapping was performed by proteolytic degradation and matrix-assisted laser desorption ionization, time-of-flight mass spectrometry. Purified BAC1 is phosphorylated readily by protein kinase A, the phosphorylation occurring within the predicted motif RRSSSK. The kinetic properties of the phosphorylation by protein kinase A displayed cooperative character. The activated insulin receptor tyrosine kinase, which phosphorylates the beta-adrenergic receptor in vivo, phosphorylates BAC1. The Y364 residue of BAC1 was predominantly phosphorylated by the insulin receptor kinase. GRK2 catalyzed modest phosphorylation of BAC1. Phosphorylation of the human analog of BAC1 in which Cys341 and Cys378 were mutated to minimize disulfide bonding constraints, displayed robust phosphorylation following thermal activation, suggesting under standard conditions that the population of BAC1 molecules capable of assuming the "activated" conformer required by GRKs is low. BAC1 was not a substrate for protein kinase C, suggesting that the canonical site in the second cytoplasmic loop of the intact receptor is preferred. The functional nature of BAC1 was tested additionally by expression of BAC1 protein in human epidermoid carcinoma A431 cells. BAC1 was found to act as a dominant-negative, blocking agonist-induced desensitization of the beta-adrenergic receptor when expressed in mammalian cells. Thus, the C-terminal, cytoplasmic tail of this G-protein-linked receptor expressed in E. coli acts as a functional domain, displaying fidelity with regard to protein kinase action in vivo and acting as a dominant-negative with respect to agonist-induced desensitization.  相似文献   

13.

Background

Their large scaffold diversity and properties, such as structural complexity and drug similarity, form the basis of claims that natural products are ideal starting points for drug design and development. Consequently, there has been great interest in determining whether such molecules show biological activity toward protein targets of pharmacological relevance. One target of particular interest is hIKK-2, a serine-threonine protein kinase belonging to the IKK complex that is the primary component responsible for activating NF-κB in response to various inflammatory stimuli. Indeed, this has led to the development of synthetic ATP-competitive inhibitors for hIKK-2. Therefore, the main goals of this study were (a) to use virtual screening to identify potential hIKK-2 inhibitors of natural origin that compete with ATP and (b) to evaluate the reliability of our virtual-screening protocol by experimentally testing the in vitro activity of selected natural-product hits.

Methodology/Principal Findings

We thus predicted that 1,061 out of the 89,425 natural products present in the studied database would inhibit hIKK-2 with good ADMET properties. Notably, when these 1,061 molecules were merged with the 98 synthetic hIKK-2 inhibitors used in this study and the resulting set was classified into ten clusters according to chemical similarity, there were three clusters that contained only natural products. Five molecules from these three clusters (for which no anti-inflammatory activity has been previously described) were then selected for in vitro activity testing, in which three out of the five molecules were shown to inhibit hIKK-2.

Conclusions/Significance

We demonstrated that our virtual-screening protocol was successful in identifying lead compounds for developing new inhibitors for hIKK-2, a target of great interest in medicinal chemistry. Additionally, all the tools developed during the current study (i.e., the homology model for the hIKK-2 kinase domain and the pharmacophore) will be made available to interested readers upon request.  相似文献   

14.
Nuclear factor-kappaB activation depends on phosphorylation and degradation of its inhibitor protein, IkappaB. The phosphorylation of IkappaBalpha on Ser(32) and Ser(36) is initiated by an IkappaB kinase (IKK) complex that includes a catalytic heterodimer composed of IkappaB kinase 1 (IKK-1) and IkappaB kinase 2 (IKK-2) as well as a regulatory adaptor subunit, NF-kappaB essential modulator. Recently, two related IkappaB kinases, TBK-1 and IKK-i, have been described. TBK-1 and IKK-i show sequence and structural homology to IKK-1 and IKK-2. TBK-1 and IKK-i phosphorylate Ser(36) of IkappaBalpha. We describe the kinetic mechanisms in terms of substrate and product inhibition of the recombinant human (rh) proteins, rhTBK-1, rhIKK-I, and rhIKK-1/rhIKK-2 heterodimers. The results indicate that although each of these enzymes exhibits a random sequential kinetic mechanism, the effect of the binding of one substrate on the affinity of the other substrate is significantly different. ATP has no effect on the binding of an IkappaBalpha peptide for the rhIKK-1/rhIKK-2 heterodimer (alpha = 0.99), whereas the binding of ATP decreased the affinity of the IkappaBalpha peptide for both rhTBK-1 (alpha = 10.16) and rhIKK-i (alpha = 62.28). Furthermore, the dissociation constants of ATP for rhTBK-1 and rhIKK-i are between the expected values for kinases, whereas the dissociation constants of the IkappaBalpha peptide for each IKK isoforms is unique with rhTBK-1 being the highest (K(IkappaBalpha) = 69.87 microm), followed by rhIKK-i (K(IkappaBalpha) = 5.47 microm) and rhIKK-1/rhIKK-2 heterodimers (K(IkappaBalpha) = 0.12 microm). Thus this family of IkappaB kinases has very unique kinetic properties.  相似文献   

15.
Li ML  Rao P  Krug RM 《The EMBO journal》2001,20(8):2078-2086
The cap-dependent endonuclease of the influenza viral RNA polymerase, which produces the capped RNA primers that initiate viral mRNA synthesis, is comprised of two active sites, one for cap binding and one for endonuclease cleavage.We identify the amino acid sequences that constitute these two active sites and demonstrate that they are located on different polymerase subunits. Binding of the 5' terminal sequence of virion RNA (vRNA) to the polymerase activates a tryptophan-rich, cap-binding sequence on the PB2 subunit. At least one of the tryptophans functions in cap binding, indicating that this active site is probably similar to that of other known cap-binding proteins. Endonuclease cleavage, which is activated by the subsequent binding of the 3' terminal sequence of vRNA, resides in a PB1 sequence that contains three essential acidic amino acids, similar to the active sites of other enzymes that cut polynucleotides to produce 3'-OH ends. These results, coupled with those of our previous study, provide a molecular map of the five known essential active sites of the influenza viral polymerase.  相似文献   

16.
The catalytic (C) subunit and the type II regulatory (RII) subunit of cAMP-dependent protein kinase can be cross-linked by interchain disulfide bonding. This disulfide bond can be catalyzed by cupric phenanthroline and also can be generated by a disulfide interchange using either RII-subunit or C-subunit that has been modified with either 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or N-4(azidophenylthio)phthalimide (APTP). When the 2 cysteine residues of the C-subunit are reacted with DTNB prior to incubation with the RII-subunit, interchain disulfide bonding occurs. Similar observations are seen with C-subunit that had been modified with APTP. Interchain disulfide bonds also form when the RII-subunit is modified with DTNB prior to incubation with the C-subunit. The presence of cAMP facilitates this cross-linking while autophosphorylation of the RII-subunit retards the rate at which the interchain disulfide bond forms. Interchain disulfide bonds also form spontaneously when the RII-subunit and the C-subunit are dialyzed at pH 8.0 in the absence of reducing agents. The specific amino acid residues that participate in intersubunit disulfide bonding have been identified as Cys-97 in the RII-subunit and Cys-199 in the C-subunit. Based on the sequence homologies of the RII-subunit with other kinase substrates and on the proximity of Cys-97 to the catalytic site, a model is proposed in which the autophosphorylation site of the RII-subunit occupies the substrate-binding site in the holoenzyme. The model also proposes that this same site may be occupied by the region flanking Cys-199 in the C-subunit when the C-subunit is dissociated.  相似文献   

17.
Three forms of protein phosphatase-1 were isolated from rabbit skeletal muscle that had Mr values of 37 000, 34 000 and 33 000 determined by sodium dodecyl sulphate (SDS) gel electrophoresis. Each species dephosphorylated the beta-subunit of phosphorylase kinase very much faster than the alpha-subunit, was inhibited by inhibitors 1 and 2 with equal potency, and was converted to a form dependent on glycogen synthase kinase-3 and Mg-ATP for activity by incubation with inhibitor-2. Digestion with cyanogen bromide or Staphylococcus aureus proteinase followed by SDS gel electrophoresis showed a very similar pattern of cleavage products for all three forms. The Mr-37 000 and Mr-34 000 species were converted to the Mr-33 000 form by incubation with chymotrypsin. It is concluded that the Mr-33 000 and Mr-34 000 forms are derived from the Mr-37 000 component by limited proteolysis. Conversion of the Mr-37 000 to the Mr-33 000 form was accompanied by a two-fold increase in activity, indicating that an Mr-4000 fragment at one end of the polypeptide is an inhibitory domain that decreases enzyme activity. The catalytic subunit of protein phosphatase 2A from rabbit skeletal muscle had an Mr of 36 000 determined by SDS gel electrophoresis and its specific activity (3 kU/mg) was much lower than that of the Mr-37 000 (15-20 kU/mg) or Mr-33/34 000 (40-50 kU/mg) forms of protein phosphatase-1. It dephosphorylated the alpha-subunit of phosphorylase kinase 4-5-fold faster than the beta-subunit, was unaffected by inhibitor-1 or inhibitor-2, and preincubation with the latter protein did not result in the production of a glycogen synthase kinase-3 and Mg-ATP-dependent form of the enzyme. Digestion with chymotrypsin did not alter the electrophoretic mobility of protein phosphatase 2A under conditions that caused quantitative conversion of the Mr-37 000 form of protein phosphatase-1 to the Mr-33 000 species. Digestion with cyanogen bromide or S. aureus proteinase, followed by SDS gel electrophoresis, showed a quite different pattern of cleavage products to those observed with protein phosphatase 1. Antibody to protein phosphatase-2A raised in sheep did not cross-react with any of the forms of protein phosphatase-1, as judged by immunoelectrophoretic and immunotitration experiments. It is concluded that protein phosphatase-1 and protein phosphatase-2A are distinct gene products.  相似文献   

18.
19.
D-3-Phosphoglycerate dehydrogenase (PGDH) from Escherichia coli is allosterically inhibited by L-serine, the end product of its metabolic pathway. Previous results have shown that inhibition by serine has a large effect on Vmax and only a small or negligible effect on Km. PGDH is thus classified as a V-type allosteric enzyme. In this study, the active site of PGDH has been studied by site-directed mutagenesis to assess the role of certain residues in substrate binding and catalysis. These consist of a group of cationic residues (Arg-240, Arg-60, Arg-62, Lys-39, and Lys-141') that potentially form an electrostatic environment for the binding of the negatively charged substrate, as well as the only tryptophan residue found in PGDH and which fits into a hydrophobic pocket immediately adjacent to the active site histidine residue. Interestingly, Trp-139' and Lys-141' are part of the polypeptide chain of the subunit that is adjacent to the active site. The results of mutating these residues show that Arg-240, Arg-60, Arg-62, and Lys-141' play distinct roles in the binding of the substrate to the active site. Mutants of Trp-139' show that this residue may play a role in stabilizing the catalytic center of the enzyme. Furthermore, these mutants appear to have a significant effect on the cooperativity of serine inhibition and suggest a possible role for Trp-139' in the cooperative interactions between subunits.  相似文献   

20.
Recent studies of chemically modified F1-ATPases have provided new information that requires a revision of our thinking on their catalytic mechanism. One of the subunits in F1-ATPase is distinguishable from the other two both structurally and functionally. The catalytic site and regulatory site of the same subunit are probably sufficiently close to each other, and the interaction between the various catalytic and regulatory sites are probably sufficiently strong to raise the uni-site rate of ATP hydrolysis by several orders of magnitude to that of promoted (multi-site) ATP hydrolysis. Although all three subunits in F1 possess weak uni-site ATPase activity, only one of them () catalyzes promoted ATP hydrolysis. But all three subunits catalyze ATP synthesis driven by the proton flux. Internal rotation of the 33 or 3 moiety relative to the remainder of the F0F1 complex did not occur during oxidative phosphorylation by reconstituted submitochondrial particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号