首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA binding proteins control gene expression by the attenuation/antitermination mechanism. HutP is an RNA binding antitermination protein. It regulates the expression of hut operon when it binds with RNA by modulating the secondary structure of single-stranded hut mRNA. HutP necessitates the presence of l-histidine and divalent metal ion to bind with RNA. Herein, we report the crystal structures of ternary complex (HutP–l-histidine–Mg2+) and EDTA (0.5 M) treated ternary complex (HutP–l-histidine–Mg2+), solved at 1.9 Å and 2.5 Å resolutions, respectively, from Geobacillus thermodenitrificans. The addition of 0.5 M EDTA does not affect the overall metal-ion mediated ternary complex structure and however, the metal ions at the non-specific binding sites are chelated, as evidenced from the results of structural features.  相似文献   

2.
HutP is an RNA binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus species by binding to cis-acting regulatory sequences on hut mRNA. We recently solved the HutP crystal structure, which revealed a novel fold where three dimers are arranged in a 3-fold axis to form the hexamer. We also identified a minimal RNA binding element sufficient for HutP binding: three UAG trinucleotide motifs, each separated by 4 nt, located just upstream of the terminator. In the present study we have identified important RNA chemical groups essential for HutP interactions, by combining an in vitro selection strategy and analyses by site-specific base substitutions. These analyses suggest that each HutP molecule recognizes one UAG motif, where the first base (U) can be substituted with other bases, while the second and third bases (A and G) are required for the interactions. Further analyses of the chemical groups of the A and G bases in the UAG motif by modified base analogs suggested the importance of the exocyclic NH2 group in these bases. Also, in this motif, only the 2′-OH group of A is important for HutP recognition. Considering the important chemical groups identified here, as well as the electrostatic potential analysis of HutP, we propose that Glu137 is one of the important residues for the HutP–RNA interactions.  相似文献   

3.
4.
Regulating gene expression directly at the mRNA level represents a novel approach to control cellular processes in all organisms. In this respect, an RNA-binding protein plays a key role by targeting the mRNA to regulate the expression by attenuation or an anti-termination mechanism only in the presence of their cognate ligands. Although many proteins are known to use these mechanisms to regulate the gene expression, no structural insights have been revealed to date to explain how these proteins trigger the conformation for the recognition of RNA. This review describes the activated conformation of HutP, brought by the coordination of L-histidine and Mg2+ ions, based on our recently solved crystal structures [uncomplexed HutP, HutP–Mg2+, HutP–L-histidine, HutP–Mg2+–L-histidine, HutP–Mg2+–L-histidine-RNA]. Once the HutP is activated, the protein binds specifically to bases within the terminator region, without undergoing further structural rearrangement. Also, a high resolution (1.48 Å) crystal structure of the quaternary complex containing the three GAG motifs is presented. This analysis clearly demonstrates that the first base in the UAG motifs is not important for the function and is consistent with our previous observations.  相似文献   

5.
6.
7.
The interactions between oligonucleotides and inorganic cations have been measured by capillary zone electrophoresis. With increasing concentrations of divalent cations (Ca2+, Mg2+, Mn2+ and Ni2+) in the running buffer, the migration behavior was evaluated by calculation of the binding constants. Besides these fundamental studies of binding equilibria, different buffer components, tris(hydroxymethyl)aminomethane and 3-(N-morpholino)propanesulfonic acid, have been investigated and their effects on metal ion binding quantified.  相似文献   

8.
Magnesium-dependent adenosine triphosphatase, purified from sheep kidney medulla using digitonin, has been characterized in a series of kinetic and magnetic resonance studies. Kinetic studies of divalent metal activation using either Mg2+ or Mn2+ indicate a biphasic response to divalent cations. Apparent Km values of 23 μm for free Mg2+ and 3.3 μm for free Mn2+ are obtained at low levels of added metal, while Km values of 0.50 mm for free Mg2+ and 0.43 mm for free Mn2+ are obtained at much higher levels of divalent cations. In all cases the kinetic data indicate that the binding of divalent metals is independent of the substrate, ATP. Kinetic studies of the substrate requirements of the Mg2+-ATPase also yield biphasic Lineweaver-Burk plots. At low ATP concentrations, kinetic studies yield apparent Km values for free ATP of 6.0 and 1.4 μm with Mg2+ and Mn2+, respectively, as the activating divalent metals. At much higher levels of ATP the response of the enzyme to ATP changes so that Km values for free ATP of 8.0 and 2.0 mm are obtained for Mg2+ and Mn2+, respectively. In both cases, however, the binding of ATP is independent of added metal. ADP inhibits the Mg2+-ATPase and the kinetic data indicate that ADP competes with ATP at both the high and low affinity sites. Dixon plots of the data are consistent with competitive inhibition at both ATP sites, with Ki values of 10.5 μm and 4.5 mm. Electron paramagnetic resonance and water proton relaxation rate studies show that the enzyme binds 1 g ion of Mn2+ per 469,000 g of protein. The Mn2+ binding studies yield a KD for Mn2+ at the single high affinity site of 2 μm, in good agreement with the kinetically determined activator constant for Mn2+ at low Mn2+ levels. Moreover, the EPR binding studies also indicate the existence of 34 weak sites for Mn2+ per single high affinity Mn2+ site. The KD for Mn2+ at these sites is 0.55 mm, in good agreement with the kinetic activator constant for Mn2+ of 0.43 mm, consistent with additional activation of the enzyme by the large number of weaker metal binding sites. The enhancement of water proton relaxation by Mn2+ in the presence of the enzyme is also consistent with the tight binding of a single Mn2+ ion per 469,000 Mr protein and the weaker binding of a large number of divalent metal ions. Analysis of the data yields a value for the enhancement for bound Mn2+ at the single tight site, ?b, of 5 and an enhancement at the 34 weak sites of 11. The frequency dependence of water proton relaxation by Mn2+ at the single tight site yields a dipolar correlation time (constant from 8–60 MHz) of 3.18 × 10?9 s. The kinetics and metal binding studies, together with the effect of temperature on ATPase activity at high and low levels of ATP, are consistent with the existence in this preparation of a single Mg2+-ATPase, with high and low affinity sites for divalent metals and for ATP. Observations of both high and low affinities for ATP have been made with two other purified ATPases. The similarities of these systems to the Mg2+-ATPase described here are discussed.  相似文献   

9.
The effects of various metal ions on cleavage activity and global folding have been studied in the extended Schistosoma hammerhead ribozyme. Fluorescence resonance energy transfer was used to probe global folding as a function of various monovalent and divalent metal ions in this ribozyme. The divalent metals ions Ca2+, Mg2+, Mn2+, and Sr2+ have a relatively small variation (less than sixfold) in their ability to globally fold the hammerhead ribozyme, which contrasts with the very large difference (>10,000-fold) in apparent rate constants for cleavage for these divalent metal ions in single-turnover kinetic experiments. There is still a very large range (>4600-fold) in the apparent rate constants for cleavage for these divalent metal ions measured in high salt (2 M NaCl) conditions where the ribozyme is globally folded. These results demonstrate that the identity of the divalent metal ion has little effect on global folding of the Schistosoma hammerhead ribozyme, whereas it has a very large effect on the cleavage kinetics. Mechanisms by which the identity of the divalent metal ion can have such a large effect on cleavage activity in the Schistosoma hammerhead ribozyme are discussed.  相似文献   

10.
Stabilization of Torpedo californica acetylcholinesterase by the divalent cations Ca+2, Mg+2, and Mn+2 was investigated. All three substantially protect the enzyme from thermal inactivation. Electron paramagnetic resonance revealed one high‐affinity binding site for Mn+2 and several much weaker sites. Differential scanning calorimetry showed a single irreversible thermal transition. All three cations raise both the temperature of the transition and the activation energy, with the transition becoming more cooperative. The crystal structures of the Ca+2 and Mg+2 complexes with Torpedo acetylcholinesterase were solved. A principal binding site was identified. In both cases, it consists of four aspartates (a 4D motif), within which the divalent ion is embedded, together with several water molecules. It makes direct contact with two of the aspartates, and indirect contact, via waters, with the other two. The 4D motif has been identified in 31 acetylcholinesterase sequences and 28 butyrylcholinesterase sequences. Zebrafish acetylcholinesterase also contains the 4D motif; it, too, is stabilized by divalent metal ions. The ASSAM server retrieved 200 other proteins that display the 4D motif, in many of which it is occupied by a divalent cation. It is a very versatile motif, since, even though tightly conserved in terms of RMSD values, it can contain from one to as many as three divalent metal ions, together with a variable number of waters. This novel motif, which binds primarily divalent metal ions, is shared by a broad repertoire of proteins. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Protein_Science:3.  相似文献   

11.
《Biophysical journal》2019,116(12):2400-2410
The highly charged RNA molecules, with each phosphate carrying a single negative charge, cannot fold into well-defined architectures with tertiary interactions in the absence of ions. For ribozymes, divalent cations are known to be more efficient than monovalent ions in driving them to a compact state, although Mg2+ ions are needed for catalytic activities. Therefore, how ions interact with RNA is relevant in understanding RNA folding. It is often thought that most of the ions are territorially and nonspecifically bound to the RNA, as predicted by the counterion condensation theory. Here, we show using simulations of Azoarcus ribozyme, based on an accurate coarse-grained three-site interaction model with explicit divalent and monovalent cations, that ion condensation is highly specific and depends on the nucleotide position. The regions with high coordination between the phosphate groups and the divalent cations are discernible even at very low Mg2+ concentrations when the ribozyme does not form tertiary interactions. Surprisingly, these regions also contain the secondary structural elements that nucleate subsequently in the self-assembly of RNA, implying that ion condensation is determined by the architecture of the folded state. These results are in sharp contrast to interactions of ions (monovalent and divalent) with rigid charged rods, in which ion condensation is uniform and position independent. The differences are explained in terms of the dramatic nonmonotonic shape fluctuations in the ribozyme as it folds with increasing Mg2+ or Ca2+ concentration.  相似文献   

12.
Divalent cations are important in the folding and stabilization of complex RNA structures. The adenine-sensing riboswitch controls the expression of mRNAs for proteins involved in purine metabolism by directly sensing intracellular adenine levels. Adenine binds with high affinity and specificity to the ligand binding or aptamer domain of the adenine-sensing riboswitch. The X-ray structure of this domain in complex with adenine revealed an intricate RNA-fold consisting of a three-helix junction stabilized by long-range base-pairing interactions and identified five binding sites for hexahydrated Mg2+-ions. Furthermore, a role for Mg2+-ions in the ligand-induced folding of this RNA was suggested. Here, we describe the interaction of divalent cations with the RNA–adenine complex in solution as studied by high-resolution NMR spectroscopy. Paramagnetic line broadening, chemical shift mapping and intermolecular nuclear Overhauser effects (NOEs) indicate the presence of at least three binding sites for divalent cations. Two of them are similar to those in the X-ray structure. The third site, which is important for the folding of this RNA, has not been observed previously. The ligand-free state of the RNA is conformationally heterogeneous and contains base-pairing patterns detrimental to ligand binding in the absence of Mg2+, but becomes partially pre-organized for ligand binding in the presence of Mg2+. Compared to the highly similar guanine-sensing riboswitch, the folding pathway for the adenine-sensing riboswitch aptamer domain is more complex and the influence of Mg2+ is more pronounced.  相似文献   

13.
Escherichia coli ribonuclease III (RNase III; EC 3.1.24) is a double-stranded(ds)-RNA-specific endonuclease with key roles in diverse RNA maturation and decay pathways. E.coli RNase III is a member of a structurally distinct superfamily that includes Dicer, a central enzyme in the mechanism of RNA interference. E.coli RNase III requires a divalent metal ion for activity, with Mg2+ as the preferred species. However, neither the function(s) nor the number of metal ions involved in catalysis is known. To gain information on metal ion involvement in catalysis, the rate of cleavage of the model substrate R1.1 RNA was determined as a function of Mg2+ concentration. Single-turnover conditions were applied, wherein phosphodiester cleavage was the rate-limiting event. The measured Hill coefficient (nH) is 2.0 ± 0.1, indicative of the involvement of two Mg2+ ions in phosphodiester hydrolysis. It is also shown that 2-hydroxy-4H-isoquinoline-1,3-dione—an inhibitor of ribonucleases that employ two divalent metal ions in their catalytic sites—inhibits E.coli RNase III cleavage of R1.1 RNA. The IC50 for the compound is 14 μM for the Mg2+-supported reaction, and 8 μM for the Mn2+-supported reaction. The compound exhibits noncompetitive inhibitory kinetics, indicating that it does not perturb substrate binding. Neither the O-methylated version of the compound nor the unsubstituted imide inhibit substrate cleavage, which is consistent with a specific interaction of the N-hydroxyimide with two closely positioned divalent metal ions. A preliminary model is presented for functional roles of two divalent metal ions in the RNase III catalytic mechanism.  相似文献   

14.
Summary The divalent metal ion binding site and binding constant of ribonuclease HI fromEscherichia coli were investigated by observing chemical shift changes using1H–15N heteronuclear NMR. Chemical shift changes were monitored during the titration of the enzyme with salts of the divalent cations. The enzyme was uniformly labeled by15N, which facilitated the monitoring of the chemical shift change of each cross peak between the backbone amide proton and the amide15N. The chemical shifts of several amide groups were affected upon the addition of a divalent metal ion: Mg2+, Ca2+, or Ba2+. These amide groups resided close to the active site, consistent with the previous X-ray crystallographic studies. From the titration analysis, a single divalent ion binding site was observed with a weak binding constant (KD=2–4 mM for the current divalent ions).  相似文献   

15.
RNase E is a major intracellular endoribonuclease in many bacteria and participates in most aspects of RNA processing and degradation. RNase E requires a divalent metal ion for its activity. We show that only Mg2+ and Mn2+ will support significant rates of activity in vitro against natural RNAs, with Mn2+ being preferred. Both Mg2+ and Mn2+ also support cleavage of an oligonucleotide substrate with similar kinetic parameters for both ions. Salts of Ni2+ and Zn2+ permitted low levels of activity, while Ca2+, Co3+, Cu2+, and Fe2+ did not. A mutation to one of the residues known to chelate Mg2+, D346C, led to almost complete loss of activity dependent on Mg2+; however, the activity of the mutant enzyme was fully restored by the presence of Mn2+ with kinetic parameters fully equivalent to those of wild-type enzyme. A similar mutation to the other chelating residue, D303C, resulted in nearly full loss of activity regardless of metal ion. The properties of RNase E D346C enabled a test of the ionic requirements of RNase E in vivo. Plasmid shuffling experiments showed that both rneD303C (i.e., the rne gene encoding a D-to-C change at position 303) and rneD346C were inviable whether or not the selection medium was supplied with MnSO4, implying that RNase E relies on Mg2+ exclusively in vivo.  相似文献   

16.
The voltage-gated proton channel Hv1 functions as a dimer, in which the intracellular C-terminal domain of the protein is responsible for the dimeric architecture and regulates proton permeability. Although it is well known that divalent metal ions have effect on the proton channel activity, the interaction of divalent metal ions with the channel in detail is not well elucidated. Herein, we investigated the interaction of divalent metal ions with the C-terminal domain of human Hv1 by CD spectra and fluorescence spectroscopy. The divalent metal ions binding induced an obvious conformational change at pH 7 and a pH-sensitive reduction of thermostability in the C-terminal domain. The interactions were further estimated by fluorescence spectroscopy experiments. There are at least two binding sites for divalent metal ions binding to the C-terminal domain of Hv1, either of which is close to His244 or His266 residue. The binding of Zn2+ to the two sites both enhanced the fluorescence of the protein at pH 7, whereas the binding of other divalent metal ions to the two sites all resulted fluorescence quenching. The orders of the strength of divalent metal ions binding to the two sites from strong to weak are both Co2+, Ca2+, Ni2+, Mg2+, and Mn2+. The strength of Ca2+, Co2+, Mg2+, Mn2+ and Ni2+ binding to the site close to His244 is stronger than that of these divalent metal ions binding to the site close to His266.  相似文献   

17.
We have applied hydrogen-deuterium exchange mass spectrometry, in conjunction with differential scanning calorimetry and protein stability analysis, to examine solution dynamics of the integrin α1 I domain induced by the binding of divalent cations, full-length type IV collagen, or a function-blocking monoclonal antibody. These studies revealed features of integrin activation and α1I-ligand complexes that were not detected by static crystallographic data. Mg2+ and Mn2+ stabilized α1I but differed in their effects on exchange rates in the αC helix. Ca2+ impacted α1I conformational dynamics without altering its gross thermal stability. Interaction with collagen affected the exchange rates in just one of three metal ion-dependent adhesion site (MIDAS) loops, suggesting that MIDAS loop 2 plays a primary role in mediating ligand binding. Collagen also induced changes consistent with increased unfolding in both the αC and allosteric C-terminal helices of α1I. The antibody AQC2, which binds to α1I in a ligand-mimetic manner, also reduced exchange in MIDAS loop 2 and increased exchange in αC, but it did not impact the C-terminal region. This is the first study to directly demonstrate the conformational changes induced upon binding of an integrin I domain to a full-length collagen ligand, and it demonstrates the utility of the deuterium exchange mass spectrometry method to study the solution dynamics of integrin/ligand and integrin/metal ion interactions. Based on the ligand and metal ion binding data, we propose a model for collagen-binding integrin activation that explains the differing abilities of Mg2+, Mn2+, and Ca2+ to activate I domain-containing integrins.  相似文献   

18.
The divalent cation requirements of NOS activity in bovine retina homogenate supernatant were investigated. Supernatants were assayed under standard conditions (in mM: EDTA 0.45, Ca2+ 0.25, Mg2+ 4.0). In order to investigate the enzyme's dependence on divalent cations, the tissue homogenate was depleted of di- and trivalent cations by passing it over a cation-exchange column (Chelex 100). Surprisingly, NOS activity was 50-100% higher in this preparation. However, addition of either EDTA (33 M) or EGTA (1 mM) almost fully inhibited NOS activity, suggesting a requirement for residual divalent metal cation(s). Phenanthroline or iminodiacetic acid at low concentrations had little effect on activity, suggesting no requirement for Fe2+, Zn2+ or Cu2+. Ca2+ had a moderate stimulatory effect, with an optimum activity around 0.01 mM. Mg2+ or Mn2+ had little effect at concentrations < 0.25 mM. However, in the presence of EDTA, Mn2+ or Ca2+ markedly stimulated NOS activity with the optimum at 0.1 mM. At high concentrations (> 0.1-0.2 mM), all divalent cations tested (Ba2+, Zn2+, Co2+, Mn2+, Mg2+, Ca2+), as well as La3+, dose-dependently inhibited NOS activity. We propose that retinal NOS requires low concentrations of naturally occurring divalent metal ions, most probably Ca2+, for optimal activity and is inhibited by high di- and trivalent metal concentrations, probably by competition with Ca2+.  相似文献   

19.
Binding of fructose-6-P and Pi to rabbit liver fructose bisphosphatase has been analyzed in terms of four negatively cooperative binding sites per enzyme tetramer. The association of fructose-6-P occurs in the absence of divalent metal ion, although the extent of binding is increased in the order Mg2+ < Zn2+ < Mn2+. The binding of Pi shows an absolute requirement for divalent metal ion with Mn2+ being more effective than Mg2+. The interaction of the enzyme with the substrate analog, (α + β) methyl-d-fructofuranoside-1,6-P2 in the presence of Mn2+ closely resembles that found for fructose-1,6-P2 in the absence of Mn2+, although the measured constants are on average an order of magnitude smaller. Combination experiments with the three ligands show that the binding follows an identical ordered sequence, i.e., the tighter sites are initially occupied regardless of the ligand's identity. The binding of Pi or fructose-6-P is not altered by the presence of the other. Comparison of binding constant with Ki values obtained from steady-state assays permits identification of the catalytic sites expressed in the latter. The association of Mn2+ at the catalytic site can be induced by fructose-6-P or the substrate analog suggesting that a 1-phosphoryl group enhances but is not necessary for Mn2+ binding at this site. The binding of AMP is decreased in the presence of substrate analog relative to fructose-1,6-P2, suggesting that the 2-hydroxyl serves as a “molecular signal.” From the single and combined binding experiments, a calculation of the equilibrium constant for the overall hydrolysis reaction on the enzyme surface in the presence of Mn2+ has been carried out and an estimate made for the Mg2+ case.  相似文献   

20.
Riboswitches are conserved functional domains in mRNA that mostly exist in bacteria. They regulate gene expression in response to varying concentrations of metabolites or metal ions. Recently, the NMT1 RNA motif has been identified to selectively bind xanthine and uric acid, respectively, both are involved in the metabolic pathway of purine degradation. Here, we report a crystal structure of this RNA bound to xanthine. Overall, the riboswitch exhibits a rod-like, continuously stacked fold composed of three stems and two internal junctions. The binding-pocket is determined by the highly conserved junctional sequence J1 between stem P1 and P2a, and engages a long-distance Watson–Crick base pair to junction J2. Xanthine inserts between a G–U pair from the major groove side and is sandwiched between base triples. Strikingly, a Mg2+ ion is inner-sphere coordinated to O6 of xanthine and a non-bridging oxygen of a backbone phosphate. Two further hydrated Mg2+ ions participate in extensive interactions between xanthine and the pocket. Our structure model is verified by ligand binding analysis to selected riboswitch mutants using isothermal titration calorimetry, and by fluorescence spectroscopic analysis of RNA folding using 2-aminopurine-modified variants. Together, our study highlights the principles of metal ion-mediated ligand recognition by the xanthine riboswitch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号