首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinach chloroplast lamellae were washed free of negatively staining surface particles (carboxydismutase and coupling factor protein) and the resulting smooth-surfaced lamellae still showed the usual large (175 A) and small (110 A) particles seen by freeze-etching. Therefore, the freeze-fracture plane probably occurs along an internal surface of the chloroplast membrane. Fractions obtained by differential centrifugation of digitonin-treated chloroplast membranes were studied by negative staining, thin sectioning, and freeze-etching techniques for electron microscopy. The material sedimenting between 1,000 g and 10,000 g, enriched in photosystem II activity, was shown to consist of membrane fragments. These freeze-etched membrane fragments were found to have large particles on most of the exposed fracture faces. The large particles had the same size and distribution pattern as the 175 A particles seen in intact chloroplast membranes. The material sedimenting between 50,000 g and 144,000 g, which had only photosystem I activity, was found to consist of particles in various degrees of aggregation. Freeze-etching of this fraction revealed only small particles corresponding to the 110 A particles seen in intact chloroplasts. A model is presented suggesting that chloroplast lamellar membranes have a binary structure, which digitonin splits into two components. The two membrane fragments have different structures, revealed by freeze-etching, and different photochemical and biochemical functions.  相似文献   

2.
Rat leukemia cells IRC 741 in suspension culture form single cytoplasmic protrusions by which the cells preferentially adhere to one another. The induction and/or maintenance of these protrusions is sensitive to changes in intercellular contact, pH, temperature, and nutritional conditions. The protrusions are stable, rigid structures which take part in intercellular adhesion but not in adhesion to substrata. Movement on substrata occurs by means of ruffling membranes formed on the main cell body. This asymmetry in cellular form and function is associated with specialized cell surface regions. Ultrastructurally, the cell surface over the protrusions lacks microvilli, and is covered with a 3,000–4,000-Å thick cell coat consisting of 200–500-Å electron-dense particles in an amorphous matrix. In contrast, the surface over the main cell body has microvilli and a 200-Å wide cell coat which lacks particles. The extracellular particles overlying the protrusions have electron-lucent cores, are protease- and pepsin-resistant, and do not stain with colloidal iron, while the matrix in which they are embedded is sensitive to proteolytic enzymes and contains acidic moieties. The negative surface charge density over the protrusions is higher than that over the main cell body, as shown by the orientation of the cells in an electric field. The unexpected observation that a region of higher charge density is one of increased intercellular adhesiveness might be explained, in part, by the rigidity of the protrusions and by the very small radius of curvature of the overlying extracellular particles. The protrusions permit the observation of discrete regions, differing in charge density, on the surface of living leukemia cells.  相似文献   

3.
Krapf  Götz  Jacobi  Günter 《Planta》1975,123(2):145-154
Summary Photooxidation of hydroxylamine to nitrite by spinach (Spinacia oleracea L. and sugarbeet (Beta vulgaris L.) chloroplast lamellae in the presence of autoxidable electron acceptors is inhibited by either solubilized or membrane-bound superoxide dismutase (SOD). This inhibition is reversed by KCN. The rates of hydroxylamine photooxidation by chloroplast lamellae, a reaction which is apparently driven by the superoxide free-radical ion, was used for quantitating the amount of SOD bound to chloroplast lamellae, as compared to a soluble enzyme of defined concentration. After digitonin fragmentation of chloroplast lamellae, ca. 80% of the SOD activity is associated with subchloroplast particles sedimenting after 2 h centrifugation at 200 000 x g. Less than 10% of the SOD activity is associated with particles sedimenting after centrifugation for 30 min at 20 000 x g. 5–10% of the cyanide-sensitive SOD is recovered in the soluble fraction of the subchloroplast-free supernatant after centrifugation at 200 000 x g for 2 h.Abbreviation SOD superoxide dismutase  相似文献   

4.
Intact cells of "Oocystis marssonii" were thin sectioned and freeze-etched, using conventional and double-recovery techniques. Thylakoids extend the length of the single chloroplast and occur in stacks of three to five. The peripheral thylakoids in a stack often alternate between adjacent stacks. Interpretation of double-recovery results suggests that membranes in unstacked regions are asymmetrical, with one face smooth and the matching face covered with closely packed 85–90 Å diameter particles. Adjacent membranes in stacked regions evidently share 170 Å diameter particles, and either membrane in a stacked region may fracture. The two fracture planes thus made possible may expose nearly entire 170 Å particles or only the upper portion of such particles, creating in the latter case images of 125–135 Å diameter particles. Fracture planes in all cases appear to occur through the interior of the membrane, in the plane between the hydrophobic ends of the lipid bilayer proposed in numerous membrane models.  相似文献   

5.
The effect of redox and chelating reagents on the ATPase and ATP-synthetase activity in chloroplast membranes as well as the ATPase activity of isolated CF1-coupling factor from chloroplasts has been studied. The Mg2+-ATPase in thylakoid membranes and isolated Ca2+-ATPase is stimulated by dithionite. In the presence of reduced glutathione the effect of dithionite is similar to those of prolonged illumination or heating. Dichlorophenolindophenol partially inhibits this activity as well as citrate, tenoyltrifluoroacetone and the excess fo ATP. Photophosphorylation in chloroplast lamellae is inhibited with dithionite. It is suggested that the membrane bound ATPase from chloroplasts may be in two structural states which differ in their enzymic activity and in the coupling to electron transfer in membrane. The transitions between these states can be induced by redox reagents.  相似文献   

6.
The neuromuscular junctions and nonjunctional sarcolemmas of mammalian skeletal muscle fibers were studied by conventional thin-section electron microscopy and freeze-fracture techniques. A modified acetylcholinesterase staining procedure that is compatible with light microscopy, conventional thin-section electron microscopy, and freeze-fracture techniques is described. Freeze-fracture replicas were utilized to visualize the internal macromolecular architecture of the nerve terminal membrane, the chemically excitable neuromuscular junction postsynaptic folds, and the electrically excitable nonjunctional sarcolemma. The nerve terminal membrane is characterized by two parallel rows of 100–110-Å particles which may be associated with synpatic vesicle fusion and release. On the postsynpatic folds, irregular rows of densely packed 110–140-Å particles were observed and evidence is assembled which indicates that these large transmembrane macromolecules may represent the morphological correlate for functional acetylcholine receptor activity in mammalian motor endplates. Differences in the size and distribution of particles in mammalian as compared with amphibian and fish postsynaptic junctional membranes are correlated with current biochemical and electron micrograph autoradiographic data. Orthogonal arrays of 60-Å particles were observed in the split postsynaptic sarcolemmas of many diaphragm myofibers. On the basis of differences in the number and distribution of these "square" arrays within the sarcolemmas, two classes of fibers were identified in the diaphragm. Subsequent confirmation of the fiber types as fast- and slow-twitch fibers (Ellisman et al. 1974. J. Cell Biol. 63[2, Pt. 2]:93 a. [Abstr.]) may indicate a possible role for the square arrays in the electrogenic mechanism. Experiments in progress involving specific labeling techniques are expected to permit positive identification of many of these intriguing transmembrane macromolecules.  相似文献   

7.
In this paper we compared the pigment composition, photochemical activity, chloroplast ultrastructure, thylakoid membrane polypeptide composition and ribosomal content of wild-type and seven light-sensitive mutants of Chlamydomonas reinhardii.All the mutants had low chlorophyll and carotenoid content compared to wild-type. Mutants lts-30 and lts-135 were also characterized by a complete absence of visible carotenoids, while mutant lts-19 was fully deficient in chlorophylls.In most mutants, the chloroplast fragment could not carry out any DCIP photoreduction and O2 evolution was also blocked. The PSI/P700/activity was decreased in most cases.The mutant strains contained mostly single lamellae in their plastids, that is the stacking capacity of the thylakoid membranes was very decreased or fully absent. In most cases the number of lamellae was also very low.The relative amounts of 70 S ribosomes were decreased in all of the mutants. The thylakoid membranes showed anomalies in the region of 24 000–30 000 dalton polypeptides. The common characteristic for them was the relatively higher amount of the 30 000 dalton polypeptide and considerably decreased level of the 27 000 and 24 000 dalton polypeptides relative to the wild-type. These polypeptides were probably constituents of the chlorophyll-protein complex II which has been suggested to be the light harvesting pigment complex for PSII. The polypeptide of 30 000 daltons is the precursor for the LHCP apoprotein (24 000 dalton protein). It may be that the lighstimulated conversion of this precursor into LHCP apoprotein was blocked in our pigment-deficient mutants.Abbreviations CPI Chlorophyll-protein complex I - PSI Photosystem I - PSII Photosystem II - LHCP Light-harvesting pigment complex - DCIP 2,6-dichlorophenolindophenol - RuDPC-ase Ribulose-1,5-biphosphate-carboxylase - SDS Sodium dodecyl sulfate - LIDS Lithium dodecyl sulfate - PAG Polyacrylamide gel - TKM buffer 25 mM Tris-HCl, pH 7.S; 25 mM KCl; 25 mM Mg acetate  相似文献   

8.
The structures of infectious human parvovirus B19 and empty wild-type particles were determined by cryoelectron microscopy (cryoEM) to 7.5-Å and 11.3-Å resolution, respectively, assuming icosahedral symmetry. Both of these, DNA filled and empty, wild-type particles contain a few copies of the minor capsid protein VP1. Comparison of wild-type B19 with the crystal structure and cryoEM reconstruction of recombinant B19 particles consisting of only the major capsid protein VP2 showed structural differences in the vicinity of the icosahedral fivefold axes. Although the unique N-terminal region of VP1 could not be visualized in the icosahedrally averaged maps, the N terminus of VP2 was shown to be exposed on the viral surface adjacent to the fivefold β-cylinder. The conserved glycine-rich region is positioned between two neighboring, fivefold-symmetrically related VP subunits and not in the fivefold channel as observed for other parvoviruses.  相似文献   

9.
Tissue culture cells of Streptanthus tortuosus (Kell.) var. orbiculatus (Greene) Hall (Cruciferae), having a viruslike particle in their nucleoli, the STV cell line, contain “supergranal” chloroplasts. Freeze-fracture studies of chloroplasts of a control cell line, which lacks the viruslike particles, reveal two complementary faces similar to those observed in spinach chloroplasts. Replicas of freeze-fractured STV supergranal chloroplasts, however, show that one membrane face (B) contains widely spaced 80 Å particles and the other face (C) is essentially smooth. Isolated STV supergranal chloroplasts lack photosystem II activity as indicated by their inability to reduce dichlorophenolindophenol and are unable to reduce NADP with electrons from photosystem II or from ascorbate-reduced dichlorophenolindophenol. However, partial photosystem I activity is indicated by the reduction of methyl viologen with electrons from dichlorophenolindophenol-ascorbate. This supports the concept that there is not a direct correspondence between grana formation and photosystem II activity. Electrophoresis shows that all of the major polypeptide bands present in the STV supergranal chloroplasts are also present in the control chloroplast membranes. One band, molecular weight 33,000, is present in a greatly increased amount in the STV supergranal chloroplast membranes and may be associated with grana stacking.  相似文献   

10.
Nucleoside triphosphatase (NTPase) activity was demonstrated at the submicroscopic level in the frog retina by the Wachstein-Meisel method utilizing various purine and pyrimidine nucleosides. Under the electron microscope magnesium-activated NTPase was localized in the outer and inner segments, and in the plexiform layers. NTPase active sites in the cones were localized diffusely in the 70 to 80 A interspaces between the double membranes of the stacked lamellae and in the investing cytoplasm. In the rods, on the other hand, sites of activity were observed at the periphery of the stacked lamellae as discrete electron opaque deposits measuring 1000 to 1500 A which interdigitated between the lamellae for short distances. Deposits of reaction product appeared more numerous in rods of dark-adapted frogs stimulated with monochromatic light with a wave length of 510 mµ. Enzyme activity was also observed in mitochondria of the rod and cone ellipsoids. In the outer and inner plexiform layers NTPase active sites were present on and between the membranes of axons and the plasma membranes of some of the neurons.  相似文献   

11.
A comparative study of peptide composition and freeze-fracture morphology of chloroplast membranes from a chlorophyll b-less mutant and a normal barley plant (Hordeum vulgare L.) is reported in this work. Using a high resolution, discontinuous sodium dodecyl sulfate—acrylamide gel electrophoretic system, we show that the mutant chloroplast membranes not only completely lack the 25-kilodalton peak, which accounts for about 18% of the chloroplast membrane protein in the normal plant, but also exhibit gross reduction in other components at 27.5- and 20-kilodalton regions. Despite such extensive deletions in the peptide composition of the mutant chloroplast lamellae, no alteration could be detected in either density or size of the intramembranous particles, visualized by freeze-fracturing.  相似文献   

12.
Degradation of chloroplasts is shown in mesophyll cells of primary leaves of wheat. The sequence of ultrastructural changes in chloroplasts of naturally senescing leaves is compared with that of detached, aging leaves. In chloroplasts of naturally senescing leaves, the first indications of aging are the appearance of osmiophilic globuli and reorientation of the thylakoidal system. The membranes of the grana and intergrana lamellae then become distended and later dissociate into distinct vesicles. Concurrent with these membrane changes, osmiophilic globuli increase in size and number, and the stroma breaks down. Finally, the chloroplast envelope ruptures and plastid contents disperse throughout the cell's interior. In chloroplasts of mesophyll cells in detached, aging leaves, initial changes also include appearance of osmiophilic globuli, but later stages of chloroplast degradation are different. The chloroplast envelope ruptures before the lamellae break down. Swelling of grana and intergrana lamellae is not pronounced and, additionally, the thylakoidal system degenerates without forming vesicles or numerous osmiophilic globuli. These differences in the sequence of chloroplast degradation indicate that naturally senescing leaves rather than detached, aging leaves should be used in studies of chloroplast senescence.  相似文献   

13.
Read SM  Delmer DP 《Plant physiology》1987,85(4):1008-1015
UDP-pyridoxal competitively inhibits the Ca2+-, cellobiose-activated (1→3)-β-glucan synthase activity of unfractionated mung bean (Vigna radiata) membranes, with a Ki of 3.8 ± 0.7 micromolar, when added simultaneously with the substrate UDP-glucose in brief (3 minute) assays. Preincubation of membranes with UDP-pyridoxal and no UDP-glucose, however, causes progressive reduction of the Vmax of subsequently assayed enzyme and, after equilibrium is reached, 50% inhibition occurs with 0.84 ± 0.05 micromolar UDP-pyridoxal. This progressive inhibition is reversible provided that the UDP-pyridoxylated membranes are not treated with borohydride, indicating formation of a Schiff's base between the inhibitor and an enzyme amino group. Consistent with this, UDP-pyridoxine is not an inhibitor. The reaction of (1→3)-β-glucan synthase with UDP-pyridoxal is stimulated strongly by Ca2+ and, less effectively, by cellobiose or sucrose, and the enzyme is protected against UDP-pyridoxal by UDP-glucose or by other competitive inhibitors, implying that modification is occurring at the active site. Pyridoxal phosphate is a less potent and less specific inhibitor. Latent (1→3)-β-glucan synthase activity inside membrane vesicles can be unmasked and rendered sensitive to UDP-pyridoxal by the addition of digitonin. Treatment of membrane proteins with UDP-[3H]pyridoxal and borohydride labels a number of polypeptides but labeling of none of these specifically requires Ca2+ and sucrose; however, a polypeptide of molecular weight 42,000 is labeled by UDP-[3H]pyridoxal in the presence of Mg2+ and copurifies with (1→3)-β-glucan synthase activity.  相似文献   

14.
A specific, 0.1–0.3-µm large ribonucleoprotein complex consisting of a central core with stalklike extensions on top of which 280–320-Å ribonucleoprotein particles are situated is found in an experimentally activated chromosome region, 2–48C, of the polytene chromosomes of Drosophila hydei. Alkaline hydrolysis, RNAse digestion, and uranyl-EDTA-lead staining indicated the ribonucleoprotein character of the 280–320-Å particles, whereas the central core seems to be devoid of RNA. The characteristic complexes are present in the nucleoplasm and at the nuclear membrane, but absent from the cytoplasm. It is suggested that the large RNP complexes are the specific products of the puff at 2–48C. Complexes similar to the ones described have not been observed in any other region of the polytene salivary gland chromosomes of this species.  相似文献   

15.
The pea cotyledon mitochondrial F1-ATPase was released from the submitochondrial particles by a washing procedure using 300 mM sucrose/2 mM Tricine (pH 7.4). The enzyme was purified by DEAE-cellulose chromatography and subsequent sucrose density gradient centrifugation. Using polyacrylamide gel electrophoresis under non-denaturing conditions, the purified protein exhibited a single sharp band with slightly lower mobility than the purified pea chloroplast CF1-ATPase. The molecular weights of pea mitochondrial F1-ATPase and pea chloroplast CF1-ATPase were found to be 409 000 and 378 000, respectively. The purified pea mitochondrial F1-ATPase dissociated into six types of subunits on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Most of these subunits had mobilities different from the subunits of the pea chloroplast CF1-ATPase. The purified mitochondrial F1-ATPase exhibited coupling factor activity. In spite of the observed differences between CF1 and F1, the mitochondrial enzyme stimulated ATP formation in CF1-depleted pea chloroplast membranes. Thus, the mitochondrial F1 was able to substitute functionally for the chloroplast CF1 in reconstituting photophosphorylation.  相似文献   

16.
A mutant of Arabidopsis thaliana, deficient in the activity of a chloroplast ω9 fatty acid desaturase, accumulates high amounts of palmitic acid (16:0), and exhibits an overall reduction in the level of unsaturation of chloroplast lipids. Under standard conditions the altered membrane lipid composition had only minor effects on growth rate of the mutant, net photosynthetic CO2 fixation, photosynthetic electron transport, or chloroplast ultrastructure. Similarly, fluorescence polarization measurements indicated that the fluidity of the membranes was not significantly different in the mutant and the wild type. However, at temperatures above 28°C, the mutant grew more rapidly than the wild type suggesting that the altered fatty acid composition enhanced the thermal tolerance of the mutant. Similarly, the chloroplast membranes of the mutant were more resistant than wild type to thermal inactivation of photosynthetic electron transport. These observations lend support to previous suggestions that chloroplast membrane lipid composition may be an important component of the thermal acclimation response observed in many plant species which are photosynthetically active during periods of seasonally variable temperature extremes.  相似文献   

17.
1. Maize chloroplasts contain a trypsin-, dithiothreitol-, and Ca2+-activated ATPase. This enzyme, which can serve as a coupling factor for photosynthetic phosphorylation, differs slightly in a few properties but in general resembles a similar one in spinach plastids which was described earlier by others.

2. Maize etioplasts (immature plastids in dark-grown plants) also contain this ATPase, and it is shown that NaCl-EDTA extracts of etioplasts can restore photosynthetic phosphorylation activity to depleted green membranes of chloroplasts.

3. Electron microscopy of maize etioplast and chloroplast membranes demonstrates the presence of protruding knobs, approx. 90 Å in diameter. Removal and reassociation of knobs with membranes can be correlated with the ability to carry on photosynthetic phosphorylation.

4. Most or possibly all of the coupling factor (measured as ATPase) activity of a chloroplast may be present in the etioplast from which it develops. The photosynthetic membrane of the chloroplast can be formed in stages.

5. The significance of these observations is discussed with regard to membrane formation in general and plastid membrane development in particular.  相似文献   


18.
MEMBRANE FUSION IN A MODEL SYSTEM : Mucocyst Secretion in Tetrahymena   总被引:50,自引:36,他引:14       下载免费PDF全文
The freeze-fracture, freeze-etch technique can be employed to reveal new details of the process of fusion of two unit membranes For this study, mucocyst discharge in Tetrahymena pyriformis provides a model system with certain general implications The undischarged mature mucocyst is a saclike, membrane-bound, secretory vesicle containing crystalline material The organelle tip finds its way toward a special site, a rosette of 150 Å diameter particles within the plasma membrane. To match this site, the mucocyst membrane forms an annulus of 110 Å diameter particles, above whose inner edge the rosette particles sit. Discharge of some mucocysts is triggered by fixation. As discharge proceeds, the organelle becomes spherical and its content changes from crystalline to amorphous. The cytoplasm between the two matching membrane sites is squeezed away and the membranes fuse Steps in membrane reorganization can be reconstructed from changes in rosette appearance in the fracture faces. First, a depression in the rosette—the fusion pocket—forms. The rosette particles spread at the lip as the pocket deepens and enlarges from 60 to 200 nm. The annulus particles then become visible at the lip, indicating completed fusion of the A fracture faces of mucocyst and plasma membranes The remaining B faces of the two membranes have opposite polarities When the content of the mucocyst is released, the edges of these faces join so that the unit membrane runs uninterruptedly around the lip and into the pocket.  相似文献   

19.
Thin and thick sections of both physiologically active and physiologically passive iridophores from a range of vertebrate species have been examined by electron microscopy at 60 kV and at 1,000 kV. All iridophores studied have been found to contain 65-Å filaments linking successive crystals in their parallel stacks; their orientation in the cell is shown in stereo pairs of 0.25-µm sections obtained from high voltage microscopy. In addition, several of the physiologically passive iridophores contain 100-Å filaments in varying numbers. It is suggested that the thin filaments might be iridophore actin and play a role in the movement of iridophore components, and that the 100-Å filaments might play a cytoskeletal role in the iridophores in which they occur.  相似文献   

20.
Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach   总被引:1,自引:0,他引:1  
The effects of nano-TiO2 (rutile) on the photochemical reaction of chloroplasts of spinach were studied. The results showed that when spinach was treated with 0.25% nano-TiO2, the Hill reaction, such as the reduction rate of FeCy, and the rate of evolution oxygen of chloroplasts was accelerated and noncyclic photophosphorylation (nc-PSP) activity of chloroplasts was higher than cyclic photophosphorylation (c-PSP) activity, the chloroplast coupling was improved and activities of Mg2+-ATPase and chloroplast coupling factor I (CF1)-ATPase on the thylakoid membranes were obviously activated. It suggested that photosynthesis promoted by nano-TiO2 might be related to activation of photochemical reaction of chloroplasts of spinach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号