首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variable regions of antibody molecules bind antigens with high affinity and specificity. The binding sites are imparted largely to the hypervariable portions (i.e., CDRs) of the variable region. Peptides derived from CDRs can bind antigen with similar specificity acting as mimic of antibody and become drug-designing core, although with markedly lower affinity. In order to increase the affinity and bioactivity, in this study, a novel peptide (PT) designed on CDRs of a TNFalpha neutralizing monoclonal antibody Z12 was linked with Fc fragment of human IgG1. The interaction mode of PT-linker-Fc (PLF) with TNFalpha was analyzed with computer-guided molecular modeling method. After expression in Escherichia coli and purification, recombinant PT-linker-Fc could bind directly with the TNFalpha coated on the ELISA plates. Furthermore, PLF could competitively inhibit the binding of Z12 to TNFalpha and also inhibit the TNFalpha-induced cytotoxicity on L929 cells. The TNFalpha antagonizing activity of PLF was significantly higher than that of the free peptide. This study highlights the potential of human Fc to enhance the potency of peptides designed on the CDRs of antibodies and could be useful in developing new TNFalpha antagonists.  相似文献   

2.
The Eph receptor tyrosine kinases are overexpressed in many pathologic tissues and have therefore emerged as promising drug target candidates. However, there are few molecules available that can selectively bind to a single Eph receptor and not other members of this large receptor family. Here we report the identification by phage display of peptides that bind selectively to different receptors of the EphB class, including EphB1, EphB2, and EphB4. Peptides with the same EphB receptor specificity compete with each other for binding, suggesting that they have partially overlapping binding sites. In addition, several of the peptides contain amino acid motifs found in the G-H loop of the ephrin-B ligands, which is the region that mediates high-affinity interaction with the EphB receptors. Consistent with targeting the ephrin-binding site, the higher affinity peptides antagonize ephrin binding to the EphB receptors. We also designed an optimized EphB4-binding peptide with affinity comparable with that of the natural ligand, ephrin-B2. These peptides should be useful as selective inhibitors of the pathological activities of EphB receptors and as targeting agents for imaging probes and therapeutic drugs.  相似文献   

3.
Y Paterson 《Biochemistry》1985,24(4):1048-1055
Two regions of rodent cytochrome c, one within the first four residues of the molecule, which is N-acetylated, and one at a beta bend around residue 44, are known to be immunogenic and antigenic in rabbits. Using sequential peptide synthesis, we have determined the residues required for linear synthetic peptides within these sequences to bind to antibody raised in rabbits to intact rat cytochrome c. The residues that were important in binding the N-terminal peptides were N-acetylglycine at position 1 and valine at position 3. The smallest peptide sequence around residue 44 that would bind to antibodies was Gln-Ala-Ala-Gly-Phe. A theoretical conformational analysis of these peptides showed that the amino-terminal tetrapeptide adopts a wide statistical ensemble of conformational states and that the addition of residues beyond 41 and 45 in the other sequence does not appear to stabilize longer peptides in the native beta-bend conformation. Thus, the antigenicity conferred by Phe-46 and Gln-42 in this peptide is most likely due to the direct interaction of the side chains of these residues with the antibody binding site. The demonstration here that native conformation is not essential for antigenic peptides to bind to antibodies raised against the whole protein indicates that the association energy between antigen and antibody can be sufficient to induce conformation in conformationally flexible peptides. This supports the concept that anti-protein and anti-peptide antibodies may invoke conformational changes in cross-reactive protein antigens and may explain why longer peptides, which may adopt stable nonnative secondary structure, often do not bind to antibodies raised to the whole molecule.  相似文献   

4.
Peptides derived from various regions of the alpha 2A-adrenergic receptor (alpha 2A-AR) were used to study receptor-G protein interactions. Binding of the partial agonist [125I]-p-iodoclonidine and the full agonist [3H]bromoxidine (UK14,304) to membrane preparations from human platelet was potently reduced by peptides (12-14 amino acids) from the second cytoplasmic loop (A) and the C-terminal side of the third cytoplasmic loop (Q). Binding of the antagonist [3H]yohimbine was significantly less affected. Five other peptides had no significant effects on ligand binding at concentrations less than 100 microM. The IC50 values for peptides A and Q were 7 and 27 microM for [125I]-p-iodoclonidine binding at the platelet alpha 2A receptor, 15 and 71 microM for the neuroblastoma-glioma (NG108-15) alpha 2B receptor, and greater than 300 microM for yohimbine binding at both alpha 2A and alpha 2B receptors. Competition studies demonstrate that at concentrations of 100 microM, peptides A and Q reduce the affinity of bromoxidine for the platelet alpha 2A-AR and this effect was abolished in the presence of guanine nucleotide. Alpha 2A-AR-stimulated GTPase activity in platelet membranes was inhibited by peptide Q with an IC50 of 16 microM but A was inactive. These data suggest that both the second cytoplasmic loop and the C-terminal part of the third cytoplasmic loop of the alpha 2A-AR are important in the interaction between the alpha 2-AR and Gi protein. Peptide Q appears to destabilize the high affinity state of the alpha 2-AR by binding directly to Gi thus preventing it from coupling to the receptor under both binding and GTPase assay conditions. The peptide from the second cytoplasmic loop (A) also reduces high affinity agonist binding in a G protein-dependent manner but its interaction with receptor and G protein is distinct in that it does not prevent activation of the G protein. These results provide new information about regions of the alpha 2-adrenergic receptor involved in G protein coupling and high affinity agonist binding.  相似文献   

5.
An effort has generated peptides from a phage-displayed library that selectively bind to the sulfated carbohydrates HSO3-LeA and HSO3-LeX. Even though more than six phaged peptides were identified by using the biopanning procedure, only one synthesized peptide displayed a consistently high binding affinity and specificity against the cognate HSO3-LeA. This dimeric, tentacle type peptide has a low micromolar affinity against the cognate sugar, which is even more specific than an antibody (Table 2(b)). Thus, it suggests that tentacle type peptides can be used as alternatives to antibodies to bind to aberrant cell-surface carbohydrates that are either the causes or results of carbohydrate-indicating disease states.  相似文献   

6.
Laminins, heterotrimeric glycoproteins in the basement membrane, are involved in diverse biological activities. So far, five alpha, three beta, and three gamma chains have been identified, and at least 15 laminin isoforms exist composed of various combinations of the different three chains. The major cell-surface receptors for laminins are integrins and proteoglycans, such as dystroglycans and syndecans. Previously, we reported that synthetic peptide A4G82 (TLFLAHGRLVFM, mouse laminin alpha4 chain residues 1514-1525) showed strong cell attachment and syndecan binding activities. On the basis of the crystal structure of the LG module and sequence alignment, A4G82 is located in the connecting loop region between beta-strands E and F in the laminin alpha4 chain LG4 module. Here, we have focused on the structural importance of this E-F loop region for the biological activity of the alpha4 chain LG4 module. To determine the importance of the loop structure, we synthesized peptide A4G82X (cyclo-A4G82X, Cys-TLFLAHGRLVFX-Cys, X= norleucine), which was cyclized via disulfide bridges at both the N- and C-termini. The cyclic peptides derived from A4G82X inhibited the heparin binding activity of the alpha4 chain G domain and promoted HT-1080 cell attachment better than the corresponding linear peptides. We determined FLAHGRLVFX as a minimal sequence of cyclo-A4G82X important for cell adhesion and heparin binding using a series of truncated peptides. Moreover, HT-1080 cell attachment to the cyclic peptides was more efficiently blocked by heparin than cell attachment to the linear peptides. Furthermore, the cyclic peptides showed significantly enhanced syndecan-2-mediated cell attachment activity. These results indicate that the activity of A4G82 is highly conformation-dependent, suggesting that the E-F loop structure is crucial for its biological activity.  相似文献   

7.
The limited size of the germline antibody repertoire has to recognize a far larger number of potential antigens. The ability of a single antibody to bind multiple ligands due to conformational flexibility in the antigen‐binding site can significantly enlarge the repertoire. Among the six complementarity determining regions (CDRs) that generally comprise the binding site, the CDR H3 loop is particularly variable. Computational protein design studies showed that predicted low energy sequences compatible with a given backbone structure often have considerable similarity to the corresponding native sequences of naturally occurring proteins, indicating that native protein sequences are close to optimal for their structures. Here, we take a step forward to determine whether conformational flexibility, believed to play a key functional role in germline antibodies, is also central in shaping their native sequence. In particular, we use a multi‐constraint computational design strategy, along with the Rosetta scoring function, to propose that the native sequences of CDR H3 loops from germline antibodies are nearly optimal for conformational flexibility. Moreover, we find that antibody maturation may lead to sequences with a higher degree of optimization for a single conformation, while disfavoring sequences that are intrinsically flexible. In addition, this computational strategy allows us to predict mutations in the CDR H3 loop to stabilize the antigen‐bound conformation, a computational mimic of affinity maturation, that may increase antigen binding affinity by preorganizing the antigen binding loop. In vivo affinity maturation data are consistent with our predictions. The method described here can be useful to design antibodies with higher selectivity and affinity by reducing conformational diversity. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
The CC chemokine eotaxin plays a predominant role in eosinophil trafficking in vivo by specifically activating the chemokine receptor CCR3. We have screened a series of synthetic peptides corresponding to extracellular regions of CCR3 for their ability to bind eotaxin. A peptide corresponding to the N terminus of CCR3 (CCR3-(1-35)) bound to eotaxin with a dissociation constant of 80 +/- 38 micrometer. However, linear or cyclic peptides derived from the first and third extracellular loops of CCR3 did not bind to eotaxin. Linear and cyclic peptides derived from the second extracellular loop precipitated upon addition of eotaxin. (1)H-(15)N correlation NMR spectroscopy indicated that an extended groove in the eotaxin surface, whose edges are defined by the N-loop, 3(10)-helical turn, and beta(2)-beta(3) hairpin, is the most likely binding surface for CCR3-(1-35). NMR assignments for CCR3-(1-35) were obtained using two-dimensional and three-dimensional homonuclear NMR experiments. (15)N-Filtered TOCSY spectra indicated that the central region of CCR3-(1-35), surrounding the DDYY sequence, is involved in the interaction with eotaxin. This was supported by the observation that a truncated N-terminal peptide (CCR3-(8-23)) binds to eotaxin with a dissociation constant of 136 +/- 23 micrometer, only slightly weaker than the full-length N-terminal peptide. Taken together with previous studies, these results suggest that interactions between the N-loop/beta(3) regions of chemokines and the N-terminal regions of their receptors may be a conserved feature of chemokine-receptor complexes across the CC, CXC, and C chemokine subfamilies. However, the low affinity of the interactions observed in these studies suggests the existence of additional binding regions in both the chemokines and the receptors.  相似文献   

9.
BACKGROUND: The protein 0.5beta is a potent strain-specific human immunodeficiency virus type 1 (HIV-1) neutralizing antibody raised against the entire envelope glycoprotein (gp120) of the HIV-1(IIIB) strain. The epitope recognized by 0.5beta is located within the third hypervariable region (V3) of gp120. Recently, several HIV-1 V3 residues involved in co-receptor utilization and selection were identified. RESULTS: Virtually complete sidechain assignment of the variable fragment (Fv) of 0.5beta in complex with the V3(IIIB) peptide P1053 (RKSIRIQRGPGRAFVTIG, in single-letter amino acid code) was accomplished and the combining site structure of 0.5beta Fv complexed with P1053 was solved using multidimensional nuclear magnetic resonance (NMR). Five of the six complementarity determining regions (CDRs) of the antibody adopt standard canonical conformations, whereas CDR3 of the heavy chain assumes an unexpected fold. The epitope recognized by 0.5beta encompasses 14 of the 18 P1053 residues. The bound peptide assumes a beta-hairpin conformation with a QRGPGR loop located at the very center of the binding pocket. The Fv and peptide surface areas buried upon binding are 601 A and 743 A(2), respectively, in the 0.5beta Fv-P1053 mean structure. The surface of P1053 interacting with the antibody is more extensive and the V3 peptide orientation in the binding site is significantly different compared with those derived from the crystal structures of a V3 peptide of the HIV-1 MN strain (V3(MN)) complexed to three different anti-peptide antibodies. CONCLUSIONS: The surface of P1053 that is in contact with the anti-protein antibody 0.5beta is likely to correspond to a solvent-exposed region in the native gp120 molecule. Some residues of this region of gp120 are involved in co-receptor binding, and in discrimination between different chemokine receptors utilized by the protein. Several highly variable residues in the V3 loop limit the specificity of the 0.5beta antibody, helping the virus to escape from the immune system. The highly conserved GPG sequence might have a role in maintaining the beta-hairpin conformation of the V3 loop despite insertions, deletions and mutations in the flanking regions.  相似文献   

10.
Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.  相似文献   

11.
Dong M  Te JA  Xu X  Wang J  Pinon DI  Storjohann L  Bordner AJ  Miller LJ 《Biochemistry》2011,50(38):8181-8192
The natural ligands for family B G protein-coupled receptors are moderate-length linear peptides having diffuse pharmacophores. The amino-terminal regions of these ligands are critical for biological activity, with their amino-terminal truncation leading to production of orthosteric antagonists. The carboxyl-terminal regions of these peptides are thought to occupy a ligand-binding cleft within the disulfide-bonded amino-terminal domains of these receptors, with the peptides in amphipathic helical conformations. In this work, we have characterized the binding and activity of a series of 11 truncated and lactam-constrained secretin(5-27) analogues at the prototypic member of this family, the secretin receptor. One peptide in this series with lactam connecting residues 16 and 20 [c[E(16),K(20)][Y(10)]sec(5-27)] improved the binding affinity of its unconstrained parental peptide 22-fold while retaining the absence of endogenous biological activity and competitive antagonist characteristics. Homology modeling with molecular mechanics and molecular dynamics simulations established that this constrained peptide occupies the ligand-binding cleft in an orientation similar to that of natural full-length secretin and provided insights into why this peptide was more effective than other truncated conformationally constrained peptides in the series. This lactam bridge is believed to stabilize an extended α-helical conformation of this peptide while in solution and not to interfere with critical residue-residue approximations while docked to the receptor.  相似文献   

12.
The monoclonal antibody tAb2 binds the N-terminal sequence of transforming growth factor alpha, VVSHFND. With the help of combinatorial peptide libraries it is possible to find homologous peptides that bind tAb2 with an affinity similar to that of the epitope. The conformational flexibility of short peptides can be constrained by cyclization in order to improve their affinity to the antibody and their stability towards proteolysis. Two cyclic peptides which are cross-reactive binders for tAb2 were selected earlier using combinatorial peptide libraries. One is cyclized by an amide bond between the N-alpha group and the side-chain of the last residue (cyclo-SHFNEYE), and the other by a disulfide bridge (cyclo-CSHFNDYC). The complex structures of tAb2 with the linear epitope peptide VVSHFND and with cyclo-SHFNEYE were determined by X-ray diffraction. Both peptides show a similar conformation and binding pattern in the complex. The linear peptide SHFNEYE does not bind tAb2, but cyclo-SHFNEYE is stabilized in a loop conformation suitable for binding. Hence the cyclization counteracts the exchange of aspartate in the epitope sequence to glutamate. Isothermal titration calorimetry was used to characterize the binding energetics of tAb2 with the two cyclic peptides and the epitope peptide. The binding reactions are enthalpically driven with an unfavorable entropic contribution under all measured conditions. The association reactions are characterized by negative DeltaC(p) changes and by the uptake of one proton per binding site. A putative candidate for proton uptake during binding is the histidine residue in each of the peptides. Hydrogen bonds and the putative formation of an electrostatic pair between the protonated histidine and a carboxy group may contribute markedly to the favorable enthalpy of complex formation.Implications to cyclization of peptides for stabilization are discussed.  相似文献   

13.
To identify structural constraints and amino acid sequences important for antibody recognition of the third variable domain (V3) of HIV-1 gp120, we have studied the solution conformation of three 35-mer circular V3 loop peptides derived from HIV-1 strains which differ in syncytium- (SI) and non-syncytium-inducing (NSI) capacity. In addition to 2D NMR and CD analyses, fluid- and solid-phase immunoassays were performed using V3-specific antibodies to V3 peptides and gp120 derived from different strains of HIV-1. NMR and CD spectroscopy indicated that circular and linear V3 loops exist in water as a dynamic ensemble of multiple conformations. Amino acid substitutions and biochemical modifications of the V3 loop were found to affect antibody binding depending on the presentation of the antigens. From NMR observations and immunological experiments, we provide evidence for a V3 loop specific monoclonal antibody interaction which is directed predominantly against linear epitopes rather than against discontinuous epitopes. The absence of a single defined solution conformation of 35-mer circular V3 peptides should be taken into account when using V3-related peptides to investigate structural elements in the V3 domain of the gp120 envelope protein of HIV-1 involved in biological processes of the virus.  相似文献   

14.
Peptide display in antibody complementarity determining regions (CDRs) offers several advantages over other peptide display systems including the potential to graft heterologous peptide sequences into multiple positions in the same backbone molecule. Despite the presence of six CDRs in an antibody variable domain, the majority of insertions reported have been made in heavy chain CDR3 (h-CDR3) which may be explained in part by the highly variable length and sequence diversity found in h-CDR3 in native antibodies. The ability to graft peptide sequences into CDRs is restricted by amino acids in these loops that make structural contacts to framework regions or are oriented towards the hydrophobic interior and are important for the proper folding of the antibody. To identify such positions in human kappa-light chain CDR1 (kappa-CDR1) and CDR2 (kappa-CDR2), we performed alignments of 1330 kappa-light chain variable region amino acid sequences and 19 variable region X-ray crystal structures. From analyses of these alignments, we predict insertion points where sequences can be grafted into kappa-CDR1 and kappa-CDR2 to prepare synthetic antibody molecules. We then tested these predictions by inserting somatostatin and somatostatin-related sequences into kappa-CDR1 and kappa-CDR2, and analyzing the expression and ability of the modified antibodies to bind to membranes containing somatostatin receptor 5. These results expand the repertoire of CDRs that can be used for the display of heterologous peptides in the CDRs of antibodies.  相似文献   

15.
The placental growth factor (PlGF), a member of VEGF family, plays a crucial role in pathological angiogenesis, especially ischemia, inflammation, and cancer. This activity is mediated by its selective binding to VEGF receptor 1 (VEGFR‐1), which occurs predominantly through receptor domains 2 and 3. The PlGF β‐hairpin region spanning residues Q87 to V100 is one of the key binding elements on the protein side. We have undertaken a study on the design, preparation, and functional characterization of the peptide reproducing this region and of a set of analogues where glycine 94, occurring at the corner of the hairpin in the native protein, is replaced by charged as well as hydrophobic residues. Also, some peptides with arginine 96 replaced by other residues have been studied. We find that the parent peptide weakly binds VEGFR‐1, but replacement of G94 with residues bearing H‐bond donating residues significantly improves the affinity. Replacement of R96 instead blocks the interaction between the peptide and the domain. The strongest affinity is observed with the G94H (peptide PlGF‐2) and G94W (peptide PlGF‐10) mutants, while the peptide PlGF‐8, bearing the R96G mutation, is totally inactive. The PlGF‐1 and PlGF‐2 peptides also bind the VEGFR‐2 receptors, though with a reduced affinity, and are able to interfere with the VEGF‐induced receptor signaling on endothelial cells. The peptides also bind VEGFR‐2 on the surface of cells, while PlGF‐8 is inactive. Data suggest that these peptides have potential applications as PlGF/VEGF mimic in various experimental settings.  相似文献   

16.
A peptide with very high specificity for the human melanocortin MC(1) receptor identified by phage display was used as a lead for the design of new peptides. Two new peptides, MS05 and MS09, were synthesized and found to bind with sub-nanomolar affinities to the MC(1) receptor. Both these peptides showed strong agonistic activity at the MC(1) receptor. The MS05 was the most MC(1) receptor selective as it showed virtually no binding affinity for the MC(4) and MC(5) receptors and only micromolar affinity for the MC(3) receptor. The selectivity and potency of the new peptides make them potent tools for studies of MC(1) receptors, as well as novel potential candidate drugs for the treatment of inflammatory conditions.  相似文献   

17.
T L Lentz  E Hawrot  P T Wilson 《Proteins》1987,2(4):298-307
Peptides corresponding to portions of loop 2 of snake venom curare-mimetic neurotoxins and to a structurally similar region of rabies virus glycoprotein were synthesized. Interaction of these peptides with purified Torpedo electric organ acetylcholine receptor was tested by measuring their ability to block the binding of 125I-labeled alpha-bungarotoxin to the receptor. In addition, inhibition of alpha-bungarotoxin binding to a 32-residue synthetic peptide corresponding to positions 173-204 of the alpha-subunit was determined. Neurotoxin and glycoprotein peptides corresponding to toxin loop 2 inhibited labeled toxin binding to the receptor with IC50 values comparable to those of nicotine and the competitive antagonist d-tubocurarine and to the alpha-subunit peptides with apparent affinities between those of d-tubocurarine and alpha-cobratoxin. Substitution of neurotoxin residue Arg37, the proposed counterpart of the quaternary ammonium of acetylcholine, with a negatively charged Glu residue reduced the apparent affinity about 10-fold. Peptides containing the neurotoxin invariant residue Trp29 and 10- to 100-fold higher affinities than peptides lacking this residue. These results demonstrate that relatively short synthetic peptides retain some of the binding ability of the native protein from which they are derived, indicating that such peptides are useful in the study of protein-protein interactions. The ability of the peptides to compete alpha-bungarotoxin binding to the receptor with apparent affinities comparable to those of other cholinergic ligands indicates that loop 2 of the neurotoxins and the structurally similar segment of the rabies virus glycoprotein act as recognition sites for the acetylcholine receptor. Invariant toxin residues Arg37 and Trp29 and their viral homologs play important, although not essential, roles in binding, possibly by interaction with complementary anionic and hydrophobic subsites on the acetylcholine receptor. The alpha-subunit peptide most likely contains all of the determinants for binding of the toxin and glycoprotein peptides present on the alpha-subunit, because these peptides bind to the 32-residue alpha-subunit peptide with the same or greater affinity as to the intact subunit.  相似文献   

18.
Family B G protein-coupled receptors include several potentially important drug targets, yet our understanding of the molecular basis of ligand binding to and activation of these receptors is incomplete. While NMR and crystal structures exist for peptide ligand-associated amino-terminal domains of several family members, these only provide insights into the conformation of the carboxyl-terminal region of the peptides. The amino-terminal region of these peptides, critical for biological activity, is believed to interact with the helical bundle domain, and is, therefore, unconstrained in these structures. The aim of the current study was to provide insights into the conformation of the amino terminus of secretin as bound to its receptor. We prepared a series of conformationally constrained secretin peptides containing intramolecular disulfide bonds that were predicted by molecular modeling to approximate the conformation of the analogous region of PACAP bound to its receptor that had been determined using transfer-NOE NMR techniques. Secretin peptides with pairs of cysteine residues in positions 2–7, 3–5, 3–6, 4–7, 7–9, and 4–10 were studied as linear and disulfide-bonded forms. The analog with a disulfide bond connecting positions 7–9 had binding affinity and biological activity similar to natural secretin, supporting the relevance of this constraint to its active conformation. While this feature is shared between secretin and PACAP, absence of activity in other constrained peptides in this series also suggest that there are differences between these receptor-bound conformations. It will be critical to extend similar studies to other family members to learn what structural elements might be most conserved in this family.  相似文献   

19.
Antibodies were raised against eight synthetic peptides matching preselected portions of the amino acid sequence of nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata. To increase the probability of obtaining antibodies specific for the exact sequence of the immunizing peptide, peptides of only five to seven amino acids in length were employed. Even under these limiting conditions some of the polyclonal rabbit immune sera showed cross-reactivity with other peptides and/or other sequence regions of the receptor. Further studies with polyclonal and monoclonal sera suggested that conformation and charge pattern rather than linear sequence are the essential determinants of antibody epitopes. Application of antibodies for topological studies therefore requires that the antibody specificity for a particular region of the antigen has been firmly established. Epitope mapping with the eight anti-peptide immune sera provides information on the accessibility to antibody of matching sequences within the receptor molecule. We find the sequence portions alpha 81-85, alpha 127-132, and alpha 190-195 to be freely accessible both at membrane-bound and at purified receptor. Binding of anti-alpha 387-392 serum does not prove accessibility of this region as the serum cross-reacts strongly with peptide fragments corresponding to the regions alpha 165-200 and beta 190-200 of nAChR from Torpedo californica. To permit binding of anti-alpha 137-142 immune serum, treatment of the receptor with endoglycosidase is required, showing that Asn-141 indeed is glycosylated in native nAChR. The homologous sequence of the other subunits differing only in one sequence position from alpha 137-142 is not accessible in native nAChR to antibody, indicating clear differences in folding of the receptor polypeptides. Sequence portions alpha 395-401 and alpha 161-166 must first be exposed by appropriate treatment to permit binding of respective serum. These results and previous epitope mapping studies by other laboratories are discussed with respect to the limited sequence specificity of antibodies.  相似文献   

20.
Proximal regions of the third intracellular loop (ICL-3) are responsible for the interaction with heterotrimeric G proteins in most of the serpentine type receptors. The peptides corresponding to these regions are able to activate G proteins in the absence of hormone and to alter the transduction of hormonal signal via the respective homologous receptor. However, the molecular mechanisms of action of the peptides, their specificity to receptors and target tissues are currently not well understood. The goal of this work was to study the receptor and tissue specificity of peptides-derivatives of C-terminal regions of the ICL-3 of luteinizing hormone receptor (LHR), type 1 relaxin receptor (RXFP1), somatostatin receptors of types 1 and 2 (Som1R and Som2R), and 5-hydroxytryptamine receptors of subtype 1B and type 6 (5-HT1BR and 5-HT6R) on the functional activity of adenylyl cyclase (AC) and GppNHp-binding of G proteins in the brain, myocardium, and testis of rats. It was shown that the influence of peptides on AC and G proteins is well detected in tissues enriched in homologous receptors. The effects stimulating AC and GppNHp-binding were most pronounced in the testes for LHR peptide, in the brain for peptide 5-HT6R, and in all of the tested tissues (but mainly in the myocardium) for the RXFP1 peptide. The AC-inhibiting effects of peptides Som1R, Som2R and 5-HT1BR, as well as the stimulation of GppNHp binding induced by these peptides, were most pronounced in the brain. In the presence of the peptides, the AC effects of hormones acting via homologous receptors were significantly attenuated, while the AC effects of other hormones changed insignificantly. The findings suggest that biological activity of the peptides depends on their interaction with complementary regions of homologous receptors, which should be taken into account when developing highly selective regulators of hormonal signaling systems on the basis of these peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号