首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix-assisted laser desorption/ionization (MALDI) imaging of proteolytic peptides from formalin-fixed paraffin embedded (FFPE) tissue sections could be integrated in the portfolio of molecular pathologists for protein localization and tissue classification. However, protein identification can be very tedious using MALDI-time-of-flight (TOF) and post-source decay (PSD)-based fragmentation. Hereby, we implemented an R package and Shiny app to exploit liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic biomarker discovery data for more specific identification of peaks observed in bottom-up MALDI imaging data. The package is made available under the GPL 3 license. The Shiny app can directly be used at the following address: https://biosciences.shinyapps.io/Maldimid.  相似文献   

2.
This study reports on the C-terminal fragment of the 11S proteasome activator complex (PA28 or Reg alpha), a novel ovarian-specific biomarker of early and late stages of ovarian cancer (OVC) relapse, in patient biopsies after chemotherapy. A total of 179 tissue samples were analyzed: 8 stage I, 55 stage III-IV, 10 relapsed serous carcinomas, 25 mucinous carcinomas and 12 borderline and 68 benign ovarian tissue samples. This fragment was detected by MALDI mass spectrometry profiling in conjunction with a novel extraction method using hexafluoroisopropanol (1,1,1,3,3,3-hexafluoro-2-propanol; HFIP) solvents for protein solubilization and by immunohistochemistry using a specific antibody directed against the C-terminal fragment of PA28. Due to its specific cellular localization, this fragment is a suitable candidate for early OVC diagnosis, patient prognosis and follow-up during therapy and discriminating borderline cancers. Statistical analyses performed for this marker at different OVC stages reflect a prevalence of 77.66 ± 8.77 % (with a correlation coefficient value p < 0.001 of 0.601 between OVC and benign tissue). This marker presents a prevalence of 88 % in the case of tumor relapse and is detected at 80.5 % in stage I and 81.25 % ± 1.06 in stage III-IV of OVC. The correlation value for the different OVC stages is p < 0.001 of 0.998. Taken together, this report constitutes the first evidence of a novel OVC-specific marker.  相似文献   

3.
MALDI mass spectrometry is able to acquire protein profiles directly from tissue that can describe the levels of hundreds of distinct proteins. MALDI imaging MS can simultaneously reveal how each of these proteins varies in heterogeneous tissues. Numerous studies have now demonstrated how MALDI imaging MS can generate different protein profiles from the different cell types in a tumor, which can act as biomarker profiles or enable specific candidate protein biomarkers to be identified.  相似文献   

4.
A common technique for the long-term storage of tissues in hospitals and clinical laboratories is preservation in formalin-fixed paraffin-embedded (FFPE) blocks. Such tissues stored for more than five years have not been useful for proteomic studies focused on biomarker discovery. Recently, MS-based proteomic analyses of FFPE showed positive results on blocks stored for less than 2 days. However, most samples are stored for more than one year, and thus our objective was to establish a novel strategy using as a model system 6-hydroxydopamine (6-OHDA) treated rat brain tissues stored in FFPE blocks for more than 9 years. We examined MALDI tissue profiling combining the use of automatic spotting of the MALDI matrix with in situ tissue enzymatic digestion. On adjacent sections, the identification of compounds is carried out by tissue digestion followed by nanoLC/MS-MS analysis. The combination of these approaches provides MALDI direct analysis, MALDI/MS imaging, as well as the localization of a large number of proteins. This method is validated since the analyses confirmed that ubiquitin, trans-elongation factor 1, hexokinase, and the Neurofilament M are down-regulated as previously shown in human or Parkinson animal models. In contrast, peroxidoredoxin 6, F1 ATPase, and alpha-enolase are up-regulated. In addition, we uncovered three novel putative biomarkers, the trans-elongation factor 1 (eEF1) and the collapsin response mediator 1 and 2 from protein libraries. Finally, we validate the CRMP-2 protein using immunocytochemistry and MALDI imaging based on the different ions from trypsic digestion of the protein. The access to archived FFPE tissue using MALDI profiling and imaging opens a whole new area in clinical studies and biomarker discovery from hospital biopsy libraries.  相似文献   

5.
Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) is a highly versatile and sensitive analytical technique, which is known for its soft ionisation of biomolecules such as peptides and proteins. Generally, MALDI MS analysis requires little sample preparation, and in some cases like MS profiling it can be automated through the use of robotic liquid-handling systems. For more than a decade now, MALDI MS has been extensively utilised in the search for biomarkers that could aid clinicians in diagnosis, prognosis, and treatment decision making. This review examines the various MALDI-based MS techniques like MS imaging, MS profiling and proteomics in-depth analysis where MALDI MS follows fractionation and separation methods such as gel electrophoresis, and how these have contributed to prostate cancer biomarker research. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

6.
Proteins and peptides present within clinical samples represent a valuable library of information regarding the ongoing processes within cells and tissues in health and disease. We have developed and validated novel technology applications that can be used to characterize the patterns of global protein expression in tissue and biofluids in either gel-based systems or by automated multidimensional nanocapillary liquid chromatography. Mass spectrophotometry platforms using MALDI MS and MS/MS or LTQ ion trap MS were capable of delivering sensitive and accurate identifications of hundreds of proteins contained in individual samples including individual forms of processing intermediates such as phospho peptides. The Systems Biology approach of integrating protein expression data with clinical data such as histopathology, clinical functional measurements, medical imaging scores, patient demographics, and clinical outcome provides a powerful tool for linking biomarker expression with biological processes that can be segmented and linked to disease presentation.  相似文献   

7.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has become a valuable tool to address a broad range of questions in many areas of biomedical research. One such application allows spectra to be obtained directly from intact tissues, termed "profiling" (low resolution) and "imaging" (high resolution). In light of the fact that MALDI tissue profiling allows over a thousand peptides and proteins to be rapidly detected from a variety of tissues, its application to disease processes is of special interest. For example, protein profiles from tumors may allow accurate prediction of tumor behavior, diagnosis, and prognosis and uncover etiologies underlying idiopathic diseases. MALDI MS, in conjunction with laser capture microdissection, is able to produce protein expression profiles from a relatively small number of cells from specific regions of heterogeneous tissue architectures. Imaging mass spectrometry enables the investigator to assess the spatial distribution of proteins, drugs, and their metabolites in intact tissues. This article provides an overview of several tissue profiling and imaging applications performed by MALDI MS, including sample preparation, matrix selection and application, histological staining prior to MALDI analysis, tissue profiling, imaging, and data analysis. Several applications represent direct translation of this technology to clinically relevant problems.  相似文献   

8.
Adverse drug effects are often associated with pathological changes in tissue. An accurate depiction of the undesired affected area, possibly supported by mechanistic data, is important to classify the effects with regard to relevance for human patients. MALDI imaging MS represents a new analytical tool to directly provide the spatial distribution and the relative abundance of proteins in tissue. Here we evaluate this technique to investigate potential toxicity biomarkers in kidneys of rats that were administered gentamicin, a well known nephrotoxicant. Differential analysis of the mass spectrum profiles revealed a spectral feature at 12,959 Da that strongly correlates with histopathology alterations of the kidney. We unambiguously identified this spectral feature as transthyretin (Ser(28)-Gln(146)) using an innovative combination of tissue microextraction and fractionation by reverse-phase liquid chromatography followed by a top-down tandem mass spectrometric approach. Our findings clearly demonstrate the emerging role of imaging MS in the discovery of toxicity biomarkers and in obtaining mechanistic insights concerning toxicity mechanisms.  相似文献   

9.
Lipids play a central role in lung physiology and pathology; however, a comprehensive lipidomic characterization of human pulmonary cells relevant to disease has not been performed. The cells involved in lung host defense, including alveolar macrophages (AMs), bronchial epithelial cells (BECs), and alveolar type II cells (ATIIs), were isolated from human subjects and lipidomic analysis by LC-MS and LC-MS/MS was performed. Additionally, pieces of lung tissue from the same donors were analyzed by MALDI imaging MS in order to determine lipid localization in the tissue. The unique distribution of phospholipids in ATIIs, BECs, and AMs from human subjects was accomplished by subjecting the large number of identified phospholipid molecular species to univariant statistical analysis. Specific MALDI images were generated based on the univariant statistical analysis data to reveal the location of specific cell types within the human lung slice. While the complex composition and function of the lipidome in various disease states is currently poorly understood, this method could be useful for the characterization of lipid alterations in pulmonary disease and may aid in a better understanding of disease pathogenesis.  相似文献   

10.
Proteomic profiling by MALDI‐TOF MS presents various advantages (speed of analysis, ease of use, relatively low cost, sensitivity, tolerance against detergents and contaminants, and possibility of automation) and is being currently used in many applications (e.g. peptide/protein identification and quantification, biomarker discovery, and imaging MS). Earlier studies by many groups indicated that moderate reproducibility in relative peptide quantification is a major limitation of MALDI‐TOF MS. In the present work, we examined and demonstrate a clear effect, in cases apparently random, of sample dilution in complex samples (urine) on the relative quantification of peptides by MALDI‐TOF MS. Results indicate that in urine relative abundance of peptides cannot be assessed with confidence based on a single MALDI‐TOF MS spectrum. To account for this issue, we developed and propose a novel method of determining the relative abundance of peptides, taking into account that peptides have individual linear quantification ranges in relation to sample dilution. We developed an algorithm that calculates the range of dilutions at which each peptide responds in a linear manner and normalizes the received peptide intensity values accordingly. This concept was successfully applied to a set of urine samples from patients diagnosed with diabetes presenting normoalbuminuria (controls) and macroalbuminuria (cases).  相似文献   

11.
Preoperative diagnostics of ovarian neoplasms rely on ultrasound imaging and the serum biomarkers CA125 and HE4. However, these markers may be elevated in non-neoplastic conditions and may fail to identify most non-serous epithelial cancer subtypes. The objective of this study was to identify histotype-specific serum biomarkers for mucinous ovarian cancer. The candidate genes with mucinous histotype specific expression profile were identified from publicly available gene-expression databases and further in silico data mining was performed utilizing the MediSapiens database. Candidate biomarker validation was done using qRT-PCR, western blotting and immunohistochemical staining of tumor tissue microarrays. The expression level of the candidate gene in serum was compared to the serum CA125 and HE4 levels in a patient cohort of prospectively collected advanced ovarian cancer. Database searches identified REG4 as a potential biomarker with specificity for the mucinous ovarian cancer subtype. The specific expression within epithelial ovarian tumors was further confirmed by mRNA analysis. Immunohistochemical staining of ovarian tumor tissue arrays showed distinctive cytoplasmic expression pattern only in mucinous carcinomas and suggested differential expression between benign and malignant mucinous neoplasms. Finally, an ELISA based serum biomarker assay demonstrated increased expression only in patients with mucinous ovarian cancer. This study identifies REG4 as a potential serum biomarker for histotype-specific detection of mucinous ovarian cancer and suggests serum REG4 measurement as a non-invasive diagnostic tool for postoperative follow-up of patients with mucinous ovarian cancer.  相似文献   

12.
Antibody‐based proteomics play a very important role in biomarker discovery and validation, facilitating the high‐throughput evaluation of candidate markers. Most proteomics‐driven discovery is nowadays based on the use of MS. MS has many advantages, including its suitability for hypothesis‐free biomarker discovery, since information on protein content of a sample is not required prior to analysis. However, MS presents one main caveat which is the limited sensitivity in complex samples, especially for body fluids, where protein expression covers a huge dynamic range. Antibody‐based technologies remain the main solution to address this challenge since they reach higher sensitivity. In this article, we review the benefits and limitations of antibody‐based proteomics in preclinical and clinical biomarker research for discovery and validation in body fluids and tissue. The combination of antibodies and MS, utilizing the best of both worlds, opens new avenues in biomarker research.  相似文献   

13.
Shaoxiong Chen 《Proteomics》2015,15(13):2358-2368
Chondrosarcoma is the third most common primary bone cancer, requiring surgical resection. However, differentiation of low‐grade chondrosarcoma (grade 1) from enchondroma that is benign and only requires regular follow‐up is one of the most frequent diagnostic dilemmas facing orthopedic oncologists in clinical management. Although multiple techniques are applied to make the distinction, immunohistochemistry is an important ancillary technique, especially when a histopathological stain of specimen must be obtained in order to guarantee an accurate confirmation. Currently, no adequate immunohistochemical diagnostic protein biomarkers are available to distinguish low‐grade chondrosarcoma from enchondroma. To discover novel protein biomarker candidates, an LC‐MS/MS approach was applied to directly compare formalin‐fixed, paraffin‐embedded low‐grade chondrosarcoma with enchondroma tissue samples. The proteomics analysis revealed 17 protein biomarker candidates. A principle was developed to prioritize the candidates using category and ranking. An algorithm, prioritization index of biomarker candidates for immunohistochemistry on tissue specimens, was developed to rank the candidates inside each category. Using the proteomics data and bioinformatics results, the prioritization index of biomarker candidates for immunohistochemistry on tissue revealed periostin as a top candidate. Immunohistochemical staining of periostin in 23 low‐grade chondrosarcoma and 31 enchondroma tissue specimens disclosed 87% specificity and 70% sensitivity.  相似文献   

14.
BackgroundIn spite of the number of applications describing the use of MALDI MSI, one of its major drawbacks is the limited capability of identifying multiple compound classes directly on the same tissue section.MethodsWe demonstrate the use of grid-aided, parafilm-assisted microdissection to perform MALDI MS imaging and shotgun proteomics and metabolomics in a combined workflow and using only a single tissue section. The grid is generated by microspotting acid dye 25 using a piezoelectric microspotter, and this grid was used as a guide to locate regions of interest and as an aid during manual microdissection. Subjecting the dissected pieces to the modified Folch method allows to separate the metabolites from proteins. The proteins can then be subjected to digestion under controlled conditions to improve protein identification yields.ResultsThe proof of concept experiment on rat brain generated 162 and 140 metabolite assignments from three ROIs (cerebellum, hippocampus and midbrain/hypothalamus) in positive and negative modes, respectively, and 890, 1303 and 1059 unique proteins. Integrated metabolite and protein overrepresentation analysis identified pathways associated with the biological functions of each ROI, most of which were not identified when looking at the protein and metabolite lists individually.ConclusionsThis combined MALDI MS imaging and multi-omics approach further extends the amount of information that can be generated from single tissue sections.General significanceTo the best of our knowledge, this is the first report combining both imaging and multi-omics analyses in the same workflow and on the same tissue section.  相似文献   

15.
Direct tissue profiling and imaging mass spectrometry (MS) provides a detailed assessment of the complex protein pattern within a tissue sample. MALDI MS analysis of thin tissue sections results in over of 500 individual protein signals in the mass range of 2 to 70 kDa that directly correlate with protein composition within a specific region of the tissue sample. To date, profiling and imaging MS has been applied to multiple diseased tissues, including human gliomas and nonsmall cell lung cancer. Interrogation of the resulting complex MS data sets has resulted in identification of both disease-state and patient-prognosis specific protein patterns. These results suggest the future usefulness of proteomic information in assessing disease progression, prognosis, and drug efficacy.  相似文献   

16.
Proteomic technologies have experienced major improvements in recent years. Such advances have facilitated the discovery of potential tumor markers with improved sensitivities and specificities for the diagnosis, prognosis and treatment monitoring of cancer patients. This review will focus on four state-of-the-art proteomic technologies, namely 2D difference gel electrophoresis, MALDI imaging mass spectrometry, electron transfer dissociation mass spectrometry and reverse-phase protein array. The major advancements these techniques have brought about and examples of their applications in cancer biomarker discovery will be presented in this review, so that readers can appreciate the immense progress in proteomic technologies from 1997 to 2008. Finally, a summary will be presented that discusses current hurdles faced by proteomic researchers, such as the wide dynamic range of protein abundance, standardization of protocols and validation of cancer biomarkers, and a 5-year view of potential solutions to such problems will be provided.  相似文献   

17.
Matrix-assisted laser desorption/ionization (MALDI) molecular imaging technology attracts increasing attention in the field of biomarker discovery. The unambiguous correlation between histopathology and MALDI images is a key feature for success. MALDI imaging mass spectrometry (MS) at high definition thus calls for technological developments that were established by a number of small steps. These included tissue and matrix preparation steps, dedicated lasers for MALDI imaging, an increase of the robustness against cell debris and matrix sublimation, software for precision matching of molecular and microscopic images, and the analysis of MALDI imaging data using multivariate statistical methods. The goal of these developments is to approach single cell resolution with imaging MS. Currently, a performance level of 20-μm image resolution was achieved with an unmodified and commercially available instrument for proteins detected in the 2-16-kDa range. The rat testis was used as a relevant model for validating and optimizing our technological developments. Indeed, testicular anatomy is among the most complex found in mammalian bodies. In the present study, we were able to visualize, at 20-μm image resolution level, different stages of germ cell development in testicular seminiferous tubules; to provide a molecular correlate for its well established stage-specific classification; and to identify proteins of interest using a top-down approach and superimpose molecular and immunohistochemistry images.  相似文献   

18.
The direct analysis of tissue sections by MALDI mass spectrometry holds tremendous potential for biomarker discovery. This technology routinely allows many hundreds of proteins to be detected over a mass range of approximately 2000-70 000 Da while maintaining the spatial localization of the proteins detected. This technology has been applied to a wide range of tissue samples, including human glioma tissue and human lung tumor tissue. In many cases, biostatistical analyses of the resulting protein profiles revealed patterns that correlated with disease state and/or clinical endpoints. This work serves as a review of recent applications and summarizes the current state of technology.  相似文献   

19.
Imaging MS is a powerful technique that combines the chemical and spatial analysis of surfaces. It allows spatial localization of multiple different compounds that are recorded in parallel without the need of a label. It is currently one of the rapidly developing techniques in the proteomics toolbox. Different complementary imaging MS methods, i.e. MALDI and secondary ion MS imaging for direct tissue analysis, can be applied on exactly the same tissue sample. This allows the identification of small molecules, peptides and proteins present on the same sample surface. Sample preparation is crucial to obtain high quality, reliable and reproducible complementary molecular images. It is essential to optimize the conditions for each step in the sample preparation protocol, ranging from sample collection and storage to surface modification. In this article, we review and discuss the importance of correct sample treatment in case of MALDI and secondary ion MS imaging experiments and describe the experimental requirements for optimal sample preparation.  相似文献   

20.
Useful biomarkers are needed for early detection of cancers. To demonstrate the potential diagnostic usefulness of a new proteomic technology, we performed Expression Difference Mapping analysis on 39 cancer cell lines from 9 different tissues using ProteinChip technology. A protein biomarker candidate of 12kDa was found in colon cancer cells. We then optimized the purification conditions for this biomarker by utilizing Retentate Chromatography mass spectrometry (RC-MS). The optimized purification conditions developed "on-chip" were directly transferred to conventional chromatography to purify the biomarker, which was identified as prothymosin-alpha by ProteinChip time-of-flight mass spectrometry (TOF MS) and ProteinChip-Tandem MS systems. The relative expression level of prothymosin-alpha between colon cancer cells and normal colon mucosal cells was evaluated on the same ProteinChip platform. Prothymosin-alpha expression in colon cancer cells was clearly higher than in normal colon cells. These results indicate that prothymosin-alpha could be a potential biomarker for colon cancer, and that the ProteinChip platform could perform the whole process of biomarker discovery from screening to evaluation of the identified marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号