首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Badaeva ED 《Genetika》2002,38(6):799-811
Four tetraploid (Aegilops ovata, Ae. biuncialis, Ae. columnaris, and Ae. triaristata) and one hexaploid (Ae. recta) species of the U-genome cluster were studied using C-banding technique. All species displayed broad C-banding polymorphism and high frequency of chromosomal rearrangements. Chromosomal rearrangements were represented by paracentric inversions and intragenomic and intergenomic translocations. We found that the processes of intraspecific divergence of Ae. ovata, Ae. biuncialis, and Ae. columnaris were probably associated with introgression of genetic material from other species. The results obtained confirmed that tetraploid species Ae. ovata and Ae. biuncialis occurred as a result of hybridization of a diploid Ae. umbellulata with Ae. comosa and Ae. heldreichii, respectively. The dissimilarity of the C-banding patterns of several chromosomes of these tetraploid species and their ancestral diploid forms indicated that chromosomal aberrations might have taken place during their speciation. Significant differences of karyotype structure, total amount and distribution of C-heterochromatin found between Ae. columnaris and Ae. triaristata, on the one hand, and Ae. ovata and Ae. biuncialis, on the other, evidenced in favor of different origin of these groups of species. In turn, similarity of the C-banding patterns of Ae. columnaris and Ae. triaristata chromosomes suggested that they were derived from a common ancestor. A diploid species Ae. umbellulata was the U-genome donor of Ae. columnaris and Ae. triaristata; however, the donor of the second genome of these species was not determined. We assumed that these tetraploid species occurred as a result of introgressive hybridization. Similarity of the C-banding patterns of chromosomes of Ae. recta and its parental species Ae. triaristata and Ae. uniaristata indicated that the formation of the hexaploid form was not associated with large modifications of the parental genomes.  相似文献   

2.
Polyploidization is a key component of plant evolution. The number of independent origins of polyploid species traditionally has been underestimated. The objective of this study was to ascertain the number of origins of a tetraploid Aegilops species. We screened 84 primer sets to identify genome-specific primer sets for the tetraploid wheat relative [Aegilops triuncialis (UUCC genome)] and its diploid progenitors [Ae. umbellulata (UU genome) and Ae. caudata (CC genome)]. Primer sets G12 and G43 were U genome-specific and D21 was a C genome-specific primer. DNA sequence comparison of the G43 locus was used to estimate the number of polyploidization events in the formation of Ae. triuncialis. Parsimony analysis of G43 data revealed at least two independent formations of Ae. triuncialis. In the chloroplast hotspot region, located between genes rbcL and petA, sequence analysis suggested that at least three polyploidization origins might have occurred independently. Ae. triuncialis appears to be a tetraploid derived from multiple origins with minimal genome change after its formation.  相似文献   

3.
采用酸性聚丙烯酰胺凝胶电泳(APAGE)法对11份A担心Aegilops kotschyi及其S^1染色体组供体种Ae.longissima2份和U染色体组供体种Ae.umbellulata6份进行了醇溶蛋白位点的研究。结果表明:11份Ae.kotschyi共分离出32条带,31条具有多态性,占96.88%,每份材料可以分离出10-17条谱带,其中仅1条(3.12%)是共有带;11份Ae.kotschyi的遗传距离的变异范围在0-0.704之间,平均为0.409;11份Ae.kotschyi分离出的多数醇溶蛋白谱带均与其染色体组供体种Ae.longissi-ma及Ae.umbellulata相同,但仍有8条谱带未在两供体种中找到;11份Ae.kotschyi的醇溶蛋白多态性(96.88%)明显高于Ae.longissima(52.94%)与Ae.umbellulata(88.89%)11份Ae.kotschyi中有4份表现出了一定的特征带,分析知可能在γ区发生了较大的变异。  相似文献   

4.
The aim of the experiments was to produce and identify different Triticum aestivum-Aegilops biuncialis disomic addition lines. To facilitate the exact identification of the Ae. biuncialis chromosomes in these Triticum aestivum-Ae. biuncialis disomic additions, it was necessary to analyze the fluorescence in situ hybridization (FISH) pattern of Ae. biuncialis (2n = 4x = 28, U(b)U(b)M(b)M(b)), comparing it with the diploid progenitors (Aegilops umbellulata, 2n = 2x = 14, UU and Aegilops comosa, 2n = 2x = 14, MM). To identify the Ae. biuncialis chromosomes, FISH was carried out using 2 DNA clones (pSc119.2 and pAs1) on Ae. biuncialis and its 2 diploid progenitor species. Differences in the hybridization patterns of all chromosomes were observed among the 4 Ae. umbellulata accessions, the 4 Ae. comosa accessions, and the 3 Ae. biuncialis accessions analyzed. The hybridization pattern of the M genome was more variable than that of the U genome. Five different wheat-Ae. biuncialis addition lines were produced from the wheat-Ae. biuncialis amphiploids produced earlier in Martonvásár. The 2M, 3M, 7M, 3U, and 5U chromosome pairs were identified with FISH using 3 repetitive DNA clones (pSc119.2, pAs1, and pTa71) in the disomic chromosome additions produced. Genomic in situ hybridization (GISH) was used to differentiate the Ae. biuncialis chromosomes from wheat, but no chromosome rearrangements between wheat and Ae. biuncialis were detected in the addition lines.  相似文献   

5.
Kozub NA  Sozinov IA  Ksinias IN  Sozinov AA 《Genetika》2011,47(9):1216-1222
Alleles at the high-molecular-weight glutenin subunit loci Glu-U1 and Glu-M(b)1 were analyzed in the tetraploid species Aegilops biuncialis (UUM(b)M(b)). The material for the investigation included the collection of 39 accessions of Ae. biuncialis from Ukraine (the Crimea), one Hellenic accession, one accession of unknown origin, F2 seeds from different crosses, as well as samples from natural populations from the Crimea. Ae. umbellulata and Ae. comosa accessions were used to allocate components of the HMW glutenin subunit patterns of Ae. biuncialis to U or M(b) genomes. Eight alleles were identified at the Glu-U1 locus and ten alleles were revealed at the Glu-M(b) 1 locus. Among alleles at the Glu-M(b) 1 locus ofAe. biuncialis there were two alleles controlling the y-type subunit only and one allele encoding the x-subunit only.  相似文献   

6.
Wang JB  Wang C  Shi SH  Zhong Y 《Hereditas》2000,133(1):1-7
The genus Aegilops comprises approximately 25 diploid, tetraploid and hexaploid species, in which the genome types of all allopolyploids involve either U or D genome, or both of them. The internal transcribed spacer (ITS) region of 18S-26S nuclear ribosomal DNA (rDNA) from 11 allopolyploid species and 7 related diploid species in the genus were directly sequenced by pooled PCR products. Phylogenetic analyses for tracing evolutionary patterns of parental rDNA in allopolyploid species were performed using the neighbor-joining method. The D genome involved tree included three clades (CC-DDCC, DDMM-DDMMSS-DDMMUU, and MM-MhMh-DDNN), but did not include Ae. squarrosa (DD). It indicated that the rDNA of ancestral D genome had been somewhat differentiated in allopolyploids. The U genome involved tree showed that the allopolyploids and their common ancestor, Ae. umbellulata, formed a clade, suggesting that rDNA in UUMM and UUSS genomes has been homogenizing toward that of ancestral U genome. The phylogenetic pattern of U genome based on ITS sequences also supported the "pivotal-differential" hypothesis.  相似文献   

7.
Kozub NA  Sozinov IA  Sozinov AA 《Genetika》2012,48(4):473-479
The diversity of alleles of gliadin loci Gli-U1 and Gli-M(b) 1 was studied in the tetraploid species Aegilops biuncialis (UUM(b)M(b)). The collection of 41 Ae. biuncialis accessions and F2 grain obtained from five crossing combinations provides material used in this study. Gliadins were separated by electrophoresis in polyacrylamide gel conducted in the acidic medium. To determine genomic affiliation (Uor M(b)) of components of Ae. biuncialis gliadin pattern, accessions of Ae. umbellulata and Ae. comosa were analyzed. In Ae. biuncialis accessions, 14 alleles were identified at the locus Gli-U1 and 12 alleles, at the locus Gli-M(b) 1. The results testify to a markedly high degree of allele diversity at major gliadin-coding loci of chromosomes belonging to Ae. biuncialis homeologous group 1.  相似文献   

8.
This study evaluates the potential of flow cytometry for chromosome sorting in two wild diploid wheats Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata. Flow karyotypes obtained after the analysis of DAPI-stained chromosomes were characterized and content of chromosome peaks was determined. Peaks of chromosome 1U could be discriminated in flow karyotypes of Ae. umbellulata and Ae. biuncialis and the chromosome could be sorted with purities exceeding 95%. The remaining chromosomes formed composite peaks and could be sorted in groups of two to four. Twenty four wheat SSR markers were tested for their position on chromosomes of Ae. umbellulata and Ae. comosa using PCR on DNA amplified from flow-sorted chromosomes and genomic DNA of wheat-Ae. geniculata addition lines, respectively. Six SSR markers were located on particular Aegilops chromosomes using sorted chromosomes, thus confirming the usefulness of this approach for physical mapping. The SSR markers are suitable for marker assisted selection of wheat-Aegilops introgression lines. The results obtained in this work provide new opportunities for dissecting genomes of wild relatives of wheat with the aim to assist in alien gene transfer and discovery of novel genes for wheat improvement.  相似文献   

9.
RAPD analysis was carried out to study the genetic variation and phylogenetic relationships of polyploid Aegilops species, which contain the D genome as a component of the alloploid genome, and diploid Aegilops tauschii, which is a putative donor of the D genome for common wheat. In total, 74 accessions of six D-genome Aegilops species were examined. The highest intraspecific variation (0.03-0.21) was observed for Ae. tauschii. Intraspecific distances between accessions ranged 0.007-0.067 in Ae. cylindrica, 0.017-0.047 in Ae. vavilovii, and 0.00-0.053 in Ae. juvenalis. Likewise, Ae. ventricosa and Ae. crassa showed low intraspecific polymorphism. The among-accession difference in alloploid Ae. ventricosa (genome DvNv) was similar to that of one parental species, Ae. uniaristata (N), and substantially lower than in the other parent, Ae. tauschii (D). The among-accession difference in Ae. cylindrica (CcDc) was considerably lower than in either parent, Ae. tauschii (D) or Ae. caudata (C). With the exception of Ae. cylindrica, all D-genome species--Ae. tauschii (D), Ae. ventricosa (DvNv), Ae. crassa (XcrDcrl and XcrDcrlDcr2), Ae. juvenalis (XjDjUj), and Ae. vavilovii (XvaDvaSva)--formed a single polymorphic cluster, which was distinct from clusters of other species. The only exception, Ae. cylindrica, did not group with the other D-genome species, but clustered with Ae. caudata (C), a donor of the C genome. The cluster of these two species was clearly distinct from the cluster of the other D-genome species and close to a cluster of Ae. umbellulata (genome U) and Ae. ovata (genome UgMg). Thus, RAPD analysis for the first time was used to estimate and to compare the interpopulation polymorphism and to establish the phylogenetic relationships of all diploid and alloploid D-genome Aegilops species.  相似文献   

10.
Thirty-four fluorescently labeled microsatellite markers were used to assess genetic diversity in a set of 30 Coffea accessions from the CENICAFE germplasm bank in Colombia. The plant material included one sample per accession of seven East African accessions representing five diploid species and 23 wild and cultivated tetraploid accessions of Coffea arabica from Africa, Indonesia, and South America. More allelic diversity was detected among the five diploid species than among the 23 tetraploid genotypes. The diploid species averaged 3.6 alleles/locus and had an average polymorphism information content (PIC) value of 0.6, whereas the wild tetraploids averaged 2.5 alleles/locus and had an average PIC value of 0.3 and the cultivated tetraploids (C. arabica cultivars) averaged 1.9 alleles/locus and had an average PIC value of 0.22. Fifty-five percent of the alleles found in the wild tetraploids were not shared with cultivated C. arabica genotypes, supporting the idea that the wild tetraploid ancestors from Ethiopia could be used productively as a source of novel genetic variation to expand the gene pool of elite C. arabica germplasm.  相似文献   

11.
山羊草属异源多倍体植物基因组进化的RAPD分析   总被引:5,自引:0,他引:5  
和24个随机引物对山羊草属(Aegilops L.)异源多倍体物种对其祖先二倍体物进行RAPD分析,对扩增出的313条带进行聚类分析发现,含D基因组的多倍体与二倍体祖先Ae.squarrosa(DD)在聚类图上聚为一支;除Ae.juvenalis(DDMMUU)聚到上一支外,含U基因组的多倍 与二倍体祖先Ae.umbellulata(UU)在聚类图上聚为另一支;多倍体与其他二倍体均不聚在一起,表明多倍体分别与Ae.squarrosa(DD)、Ae.umbellulata(UU)具有较近的亲缘关系,这说明多倍体开之后,D和U基因组变化较小,而其他基因组则发生了较大的变化。  相似文献   

12.
RAPD analysis was used to study the genetic variation and phylogenetic relationships of polyploid Aegilops species with the U genome. In total, 115 DNA samples of eight polyploid species containing the U genome and the diploid species Ae. umbellulata (U) were examined. Substantial interspecific polymorphism was observed for the majority of the polyploid species with the U genome (interspecific differences, 0.01–0,2; proportion of polymorphic loci, 56.6–88.2%). Aegilops triuncialis was identified as the only alloploid species with low interspecific polymorphism (interspecific differences, 0–0.01, P = 50%) in the U-genome group. The U-genome Aegilops species proved to be separated from other species of the genus. The phylogenetic relationships were established for the U-genome species. The greatest separation within the U-genome group was observed for the US-genome species Ae. kotschyi and Ae. variabilis. The tetraploid species Ae. triaristata and Ae. columnaris, which had the UX genome, and the hexaploid species Ae. recta (UXN) were found to be related to each other and separate from the UM-genome species. A similarity was observed between the UM-genome species Ae. ovata and Ae. biuncialis, which had the UM genome, and the ancestral diploid U-genome species Ae. umbellulata. The UC-genome species Ae. triuncialis was rather separate and slightly similar to the UX-genome species.  相似文献   

13.
Considerable progress has been made in understanding the structure, function and genetic regulation of high-molecular-weight (HMW) glutenin subunits in hexaploid wheat. In contrast, less is known about these types of proteins in wheat related species. In this paper, we report the analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species, Aegilops umbellulata (UU) and Aegilops caudata (CC). SDS-PAGE analysis demonstrated that, for each of the four Ae. umbellulata accessions, there were two HMW glutenin subunits (designated here as 1Ux and 1Uy) with electrophoretic mobilities comparable to those of the x- and y-type subunits encoded by the Glu-D1 locus, respectively. In our previous study involving multiple accessions of Ae. caudata, two HMW glutenin subunits (designated as 1Cx and 1Cy) with electrophoretic mobilities similar to those of the subunits controlled by the Glu-D1 locus were also detected. These results indicate that the U genome of Ae. umbellulata and the C genome of Ae. caudata encode HMW glutenin subunits that may be structurally similar to those specified by the D genome. The complete open reading frames (ORFs) coding for x- and y-type HMW glutenin subunits in the two diploid species were cloned and sequenced. Analysis of deduced amino acid sequences revealed that the primary structures of the x- and y-type HMW glutenin subunits of the two Aegilops species were similar to those of previously published HMW glutenin subunits. Bacterial expression of modified ORFs, in which the coding sequence for the signal peptide was removed, gave rise to proteins with electrophoretic mobilities identical to those of HMW glutenin subunits extracted from seeds, indicating that upon seed maturation the signal peptide is removed from the HMW glutenin subunit in the two species. Phylogenetic analysis showed that 1Ux and 1Cx subunits were most closely related to the 1Dx type subunit encoded by the Glu-D1 locus. The 1Uy subunit possessed a higher level of homology to the 1Dy-type subunit compared with the 1Cy subunit. In conclusion, our study suggests that the Glu-U1 locus of Ae. umbellulata and the Glu-C1 locus of Ae. caudata specify the expression of HMW glutenin subunits in a manner similar to the Glu-D1 locus. Consequently, HMW glutenin subunits from the two diploid species may have potential value in improving the processing properties of hexaploid wheat varieties.  相似文献   

14.
We studied variation of microsatellites BM224 and Bcal7 in three species of the Bufo viridis diploid-polyploid complex. We found that locus Bcal7 in all examined samples was monomorphic. Three alleles of microsatellite BM224 were found. Among tetraploid toads, the western species B. oblongus had only one allele variant, whereas the eastern species B. pewzowi had two other alleles. Similar distribution of alleles was observed in triploid specimens, collected in the area borders of tetraploid and diploid species. Among samples of diploid toad B. viridis, we found all three allele variants of microsatellite BM224. Their distribution was geographically determined. A comparison of allele distribution with genome size variation in diploid toads showed very similar patterns.  相似文献   

15.
The short interspersed nuclear element (SINE), Au, was used to develop sequence-specific amplified polymorphism (S-SAP) markers for U- and M-genome chromosomes. The markers were localized using Triticum aestivum (wheat)-- Aegilops geniculata and wheat-- Aegilops biuncialis disomic chromosome addition lines. Thirty-seven markers distributed over 6 U and 6 M chromosomes were produced. A genetic diversity study carried out on 37 accessions from Ae. biuncialis, Ae. comosa, Ae. geniculata, and Ae. umbellulata suggested that Ae. biuncialis have arisen from its diploid ancestors more recently than Ae. geniculata. Several earlier studies indicated that the M genomes in polyploid Aegilops species had accumulated substantial rearrangements, whereas the U genomes remained essentially unmodified. However, this cannot be attributed to the preferential insertion of retroelements into the M genome chromosomes. Fourteen markers from a total of 8 chromosomes were sequenced; 3 markers were similar to known plant genes, 1 was derived from a long terminal repeat (LTR) retrotransposon, and 10 markers did not match to any known DNA sequences, suggesting that they were located in the highly variable intergenic regions.  相似文献   

16.
The DNA sequence of an extracellular (EXC) domain of an oat (Avena sativa L.) receptor-like kinase (ALrk10) gene was amplified from 23 accessions of 15 Avena species (6 diploid, 6 tetraploid, and 3 hexaploid). Primers were designed from one partial oat ALrk10 clone that had been used to map the gene in hexaploid oat to linkage groups syntenic to Triticeae chromosome 1 and 3. Cluster (phylogenetic) analyses showed that all of the oat DNA sequences amplified with these primers are orthologous to the wheat and barley sequences that are located on chromosome 1 of the Triticeae species. Triticeae chromosome 3 Lrk10 sequences were not amplified using these primers. Cluster analyses provided evidence for multiple copies at a locus. The analysis divided the ALrk EXC sequences into two groups, one of which included AA and AABB genome species and the other CC, AACC, and CCCC genome species. Both groups of sequences were found in hexaploid AACCDD genome species, but not in all accessions. The C genome group was divided into 3 subgroups: (i) the CC diploids and the perennial autotetraploid, Avena macrostachya (this supports other evidence for the presence of the C in this autotetraploid species); (ii) a sequence from Avena maroccana and Avena murphyi and several sequences from different accessions of A. sativa; and (iii) A. murphyi and sequences from A. sativa and Avena sterilis. This suggests a possible polyphyletic origin for A. sativa from the AACC progenitor tetraploids or an origin from a progenitor of the AACC tetraploids. The sequences of the A genome group were not as clearly divided into subgroups. Although a group of sequences from the accession 'SunII' and a sequence from line Pg3, are clearly different from the others, the A genome diploid sequences were interspersed with tetraploid and hexaploid sequences.  相似文献   

17.
18.
The synthetic allotetraploid Aegilops sharonensis x Ae. umbellulata (genomic formula S(sh)U) was used to study inheritance and expression of 45S rDNA during early stages of allopolyploid formation. Using silver staining, we revealed suppression of the NORs (nucleolar organizing regions) from the S(sh) genome in response to polyploidization. Most allopolyploid plants of the S(2)-S(4) generations retained the chromosomal location of 45S rDNA typical for the parental species, except for two S(3) plants in which a deletion of the rDNA locus on one of the homologous 6S(sh) chromosomes was revealed. In addition, we found a decrease in NOR signal intensity on both 6S(sh) chromosomes in a portion of the S(3) and S(4) allopolyploid plants. As Southern hybridization showed, the allopolyploid plants demonstrated additive inheritance of parental rDNA units together with contraction of copy number of some rDNA families inherited from Ae. sharonensis. Also, we identified a new variant of amplified rDNA unit with MspAI1 restriction sites characteristic of Ae. umbellulata. These genetic alterations in the allopolyploid were associated with comparative hypomethylation of the promoter region within the Ae. umbellulata-derived rDNA units. The fast uniparental elimination of rDNA observed in the synthetic allopolyploid agrees well with patterns observed previously in natural wheat allotetraploids.  相似文献   

19.
? Premise of the study: The evolutionary history of Leucaena has been impacted by polyploidy, hybridization, and divergent allopatric species diversification, suggesting that this is an ideal group to investigate the evolutionary tempo of polyploidy and the complexities of reticulation and divergence in plant diversification. ? Methods: Parsimony- and ML-based phylogenetic approaches were applied to 105 accessions sequenced for six sequence characterized amplified region-based nuclear encoded loci, nrDNA ITS, and four cpDNA regions. Hypotheses for the origin of tetraploid species were inferred using results derived from a novel species tree and established gene tree methods and from data on genome sizes and geographic distributions. ? Results: The combination of comprehensively sampled multilocus DNA sequence data sets and a novel methodology provide strong resolution and support for the origins of all five tetraploid species. A minimum of four allopolyploidization events are required to explain the origins of these species. The origin(s) of one tetraploid pair (L. involucrata/L. pallida) can be equally explained by two unique allopolyploidizations or a single event followed by divergent speciation. ? Conclusions: Alongside other recent findings, a comprehensive picture of the complex evolutionary dynamics of polyploidy in Leucaena is emerging that includes paleotetraploidization, diploidization of the last common ancestor to Leucaena, allopatric divergence among diploids, and recent allopolyploid origins for tetraploid species likely associated with human translocation of seed. These results provide insights into the role of divergence and reticulation in a well-characterized angiosperm lineage and into traits of diploid parents and derived tetraploids (particularly self-compatibility and year-round flowering) favoring the formation and establishment of novel tetraploids combinations.  相似文献   

20.
Spotted knapweed (Centaurea stoebe) occurs from Western Asia to Western Europe both as diploid and tetraploid cytotypes, predominantly in single-cytotype populations with higher frequency of diploid populations. Interestingly, only tetraploids have been recorded so far from its introduced range in North America where they became highly invasive. We performed phylogenetic and network analyses of more than 40 accessions of the C. stoebe and C. paniculata groups and other related taxa using cloned internal transcribed spacer (ITS) and sequences of the chloroplast trnT-trnL and atpBrbcL regions to (i) assess the evolutionary origin of tetraploid C. stoebe s.l., and (ii) uncover the phylogeny of the C. stoebe group. Both issues have not been studied so far and thus remained controversial. Cloned ITS sequences showed the presence of two slightly divergent ribotypes occurring in tetraploid cytotype, while only one major ribotype was present in diploid C. stoebe s.str. This pattern suggests an allopolyploid origin of tetraploids with contribution of the diploid C. stoebe s.str. genome. Although we were not able to detect the second parental taxon, we hypothesize that hybridization might have triggered important changes in morphology and life history traits, which in turn may explain the colonization success of the tetraploid taxon. Bayesian relaxed clock estimations indicate a relatively recent--Pleistocene origin of the tetraploid C. stoebe s.l. Furthermore, our analyses showed a deep split between the C. paniculata and C. stoebe groups, and a young diversification of the taxa within the C. stoebe group. In contrast to nrDNA analyses, the observed pattern based on two cpDNA regions was inconclusive with respect to the origin and phylogeny of the studied taxa, most likely due to shared ancient polymorphism and frequent homoplasies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号