首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The overproduction of eukaryotic membrane proteins is a major impediment in their structural and functional characterization. Here we have used the nisin-inducible expression system of Lactococcus lactis for the overproduction of 11 mitochondrial transport proteins from yeast. They were expressed at high levels in a functional state in the cytoplasmic membrane. The results also show that the level of expression is influenced by the N-terminal regions of the transporters. Expression levels were improved >10-fold either by replacing or truncating these regions or by adding lactococcal signal peptides. The observed expression levels are now compatible with a realistic exploration of crystallization conditions. The lactococcal expression system may be used for the high-throughput functional characterization of eukaryotic membrane proteins and structural genomics.  相似文献   

2.
The last four years have brought exciting progress in membrane protein research. Finally those many efforts that have been put into expression of eukaryotic membrane proteins are coming to fruition and enable to solve an ever-growing number of high resolution structures. In the past, many skilful optimization steps were required to achieve sufficient expression of functional membrane proteins. Optimization was performed individually for every membrane protein, but provided insight about commonly encountered bottlenecks and, more importantly, general guidelines how to alleviate cellular limitations during microbial membrane protein expression. Lately, system-wide analyses are emerging as powerful means to decipher cellular bottlenecks during heterologous protein production and their use in microbial membrane protein expression has grown in popularity during the past months.  相似文献   

3.
Membrane proteins comprise up to one-third of prokaryotic and eukaryotic genomes, but only a very small number of membrane protein structures are known. Membrane proteins are challenging targets for structural biology, primarily due to the difficulty in producing and purifying milligram quantities of these proteins. We are evaluating different methods to produce and purify large numbers of prokaryotic membrane proteins for subsequent structural and functional analysis. Here, we present the comparative expression data for 37 target proteins, all of them secondary transporters, from the mesophilic organism Salmonella typhimurium and the two hyperthermophilic organisms Aquifex aeolicus and Pyrococcus furiosus in three different Escherichia coli expression vectors. In addition, we study the use of Lactococcus lactis as a host for integral membrane protein expression. Overall, 78% of the targets were successfully produced under at least one set of conditions. Analysis of these results allows us to assess the role of different variables in increasing "expression space" coverage for our set of targets. This analysis implies that to maximize the number of nonhomologous targets that are expressed, orthologous targets should be chosen and tested in two vectors with different types of promoters, using C-terminal tags. In addition, E. coli is shown to be a robust host for the expression of prokaryotic transporters, and is superior to L. lactis. These results therefore suggest appropriate strategies for high-throughput heterologous overproduction of membrane proteins.  相似文献   

4.
《Journal of molecular biology》2014,426(24):4139-4154
The overexpression of authentically folded eukaryotic membrane proteins in milligramme quantities is a fundamental prerequisite for structural studies. One of the most commonly used expression systems for the production of mammalian membrane proteins is the baculovirus expression system in insect cells. However, a detailed analysis by radioligand binding and comparative Western blotting of G protein-coupled receptors and a transporter produced in insect cells showed that a considerable proportion of the expressed protein was misfolded and incapable of ligand binding. In contrast, production of the same membrane proteins in stable inducible mammalian cell lines suggested that the majority was folded correctly. It was noted that detergent solubilisation of the misfolded membrane proteins using either digitonin or dodecylmaltoside was considerably less efficient than using sodium dodecyl sulfate or foscholine-12, whilst these detergents were equally efficient at solubilising correctly folded membrane proteins. This provides a simple and rapid test to suggest whether heterologously expressed mammalian membrane proteins are indeed correctly folded, without requiring radioligand binding assays. This will greatly facilitate the high-throughput production of fully functional membrane proteins for structural studies.  相似文献   

5.
Persistent hurdles impede the successful determination of high-resolution crystal structures of eukaryotic integral membrane proteins (IMP). We designed a high-throughput structural genomics oriented pipeline that seeks to minimize effort in uncovering high-quality, responsive non-redundant targets for crystallization. This “discovery-oriented” pipeline sidesteps two significant bottlenecks in the IMP structure determination pipeline: expression and membrane extraction with detergent. In addition, proteins that enter the pipeline are then rapidly vetted by their presence in the included volume on a size-exclusion column—a hallmark of well-behaved IMP targets. A screen of 384 rationally selected eukaryotic IMPs in baker’s yeast Saccharomyces cerevisiae is outlined to demonstrate the results expected when applying this discovery-oriented pipeline to whole-organism membrane proteomes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Franklin A. Hays and Zygy Roe-Zurz have contributed equally to this work.  相似文献   

6.
Eukaryotic membrane proteins, many of which are key players in various biological processes, constitute more than half of the drug targets and represent important candidates for structural studies. In contrast to their physiological significance, only very limited number of eukaryotic membrane protein structures have been obtained due to the technical challenges in the generation of recombinant proteins. In this review, we examine the major recombinant expression systems for eukaryotic membrane proteins and compare their relative advantages and disadvantages. We also attempted to summarize the recent technical strategies in the advancement of eukaryotic membrane protein purification and crystallization.  相似文献   

7.
Despite recent successes in the structure determination of eukaryotic membrane proteins, the total number of structures of these important proteins is severely underrepresented in the Protein Data Bank. Although prokaryotic homologues provide valuable mechanistic insight, they often lack crucial details, such as post-translational modification and additional intra or extracellular domains that are important for understanding the function and regulation of these proteins in eukaryotic cells. The production of milligram quantities of recombinant protein is still a serious obstacle to the structural and functional characterization of these proteins. Here, we report a modification to a previously described over expression system using the simple eukaryote Saccharomyces cerevisiae that can increase overall protein yield and improve downstream purification procedures. Using a metabolic marker under the control of a truncated promoter, we show that expression levels for several membrane transporters are increased fourfold. We further demonstrate that the increase in expression for our test proteins resulted in a concomitant increase in functional protein. Using this system, we were able to increase the expression level of a plant transporter, NRT1.1, which was a key factor in its structural and functional characterization.  相似文献   

8.
Strategies for prokaryotic expression of eukaryotic membrane proteins   总被引:4,自引:0,他引:4  
High-level heterologous expression of integral membrane proteins at full-length is a useful tool for their structural and functional characterization. Here, systems that have previously been used for efficient bacterial expression of eukaryotic membrane proteins are reviewed and novel vectors consisting of a modular fusion moiety based on nuclease A from Staphylococcus aureus are presented.  相似文献   

9.
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug–target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.  相似文献   

10.
Following the success of genome sequencing projects, attention has now turned to studies of the structure and function of proteins. Although cell-based expression systems for protein production have been widely used, they have certain limitations in terms of the quality and quantity of the proteins produced and for high-throughput production. Many of these limitations can be circumvented by the use of cell-free translation systems. Among such systems, the wheat germ based system is of special interest for its eukaryotic nature; it has the significant advantage of producing eukaryotic multidomain proteins in a folded state. Several advances in the use of cell-free expression systems have been made in the past few years and successful applications of these systems to produce proteins for functional and structural biology studies have been reported.  相似文献   

11.
Membrane protein structural biology is still a largely unconquered area, given that approximately 25% of all proteins are membrane proteins and yet less than 150 unique structures are available. Membrane proteins have proven to be difficult to study owing to their partially hydrophobic surfaces, flexibility and lack of stability. The field is now taking advantage of the high-throughput revolution in structural biology and methods are emerging for effective expression, solubilisation, purification and crystallisation of membrane proteins. These technical advances will lead to a rapid increase in the rate at which membrane protein structures are solved in the near future.  相似文献   

12.
The recombinant expression of eukaryotic membrane proteins has been a major stumbling block in efforts to determine their structures. In the last two years, however, five such proteins have yielded high-resolution X-ray or electron diffraction data, opening the prospect of increased throughput for eukaryotic membrane protein structure determination. Here, we summarize the major expression systems available, and highlight technical advances that should facilitate more systematic screening of expression conditions for this physiologically important class of targets.  相似文献   

13.
The expression of high levels of stable and functional proteins remains a bottleneck in many scientific endeavors, including the determination of structures in a high-throughput fashion or the screening for novel active compounds in modern drug discovery. Recently, numerous developments have been made to improve the production of soluble and active proteins in heterologous expression systems. These include modifications to the expression constructs, the introduction of new and/or improved pro- and eukaryotic expression systems, and the development of improved cell-free protein synthesis systems. The introduction of robotics has enabled a massive parallelization of expression experiments, thereby vastly increasing the throughput and, hopefully, the output of such experiments. In addition, the big challenges of recombinant overexpression of membrane and secreted proteins are tackled, and some new methods are reviewed.  相似文献   

14.
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.  相似文献   

15.
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.  相似文献   

16.
The production of sufficient amounts of chemically and conformationally homogenous protein is a major requirement for successful crystallization and structure determination. With membrane proteins, this constitutes a particular problem because the membrane volume is limited and the organisms are usually very sensitive to changes in membrane properties brought about by massive protein insertion. Moreover, the extraction of membrane proteins from the membrane with detergents is generally a harsh treatment, which gives rise to conformational aberrations. A number of successful procedures for functional expression followed by purification are reviewed here together with nonfunctional expression into inclusion bodies and subsequent (re)folding to produce functional proteins. Most of the data are for prokaryotic outer membrane proteins, but the outer membrane proteins of eukaryotic organelles are also considered as they do show similar features.  相似文献   

17.
The production of sufficient amounts of chemically and conformationally homogenous protein is a major requirement for successful crystallization and structure determination. With membrane proteins, this constitutes a particular problem because the membrane volume is limited and the organisms are usually very sensitive to changes in membrane properties brought about by massive protein insertion. Moreover, the extraction of membrane proteins from the membrane with detergents is generally a harsh treatment, which gives rise to conformational aberrations. A number of successful procedures for functional expression followed by purification are reviewed here together with nonfunctional expression into inclusion bodies and subsequent (re)folding to produce functional proteins. Most of the data are for prokaryotic outer membrane proteins, but the outer membrane proteins of eukaryotic organelles are also considered as they do show similar features.  相似文献   

18.
Current cell-free protein expression systems are capable of synthesizing proteins with high speed and accuracy; however, the yields are low due to their instability over time. Escherichia coli based systems are not always sufficient for expression of eukaryotic proteins. This report reviews a high-throughput protein production method based on the cell-free system prepared from eukaryote, wheat embryos. We first demonstrate a method for preparation of this extract that exhibited a high degree of stability and activity. To maximize translation yield and throughput, we address and resolve the following issues: (1) optimization of the ORF flanking regions; (2) PCR-based generation of DNA for mRNA production; (3) expression vectors for large-scale protein production; and (4) a translation reaction that does not require a membrane. The combination of these elemental processes with robotic automation resulted in high-throughput protein synthesis.  相似文献   

19.
The value of theEscherichia coli expression system has long been establishedbecause of its effectiveness in characterizing the structure andfunction of exogenously expressed proteins. When eukaryotic membraneproteins are functionally expressed in E. coli, thisorganism can serve as an alternative to eukaryotic host cells. A fewexamples have been reported of functional expression of animal andplant membrane proteins in E. coli. This mini-review describes the following findings: 1) homologousK+ transporters exist in prokaryotic cells and ineukaryotic cells; 2) plant K+ transporters canfunctionally complement mutant K+ transporter genes inE. coli; and 3) membrane structures of plant K+ transporters can be elucidated in an E. colisystem. These experimental findings suggest the possibility ofutilizing the E. coli bacterium as an expression system forother eukaryotic membrane transport proteins.

  相似文献   

20.
A lipidic-sponge phase screen for membrane protein crystallization   总被引:3,自引:0,他引:3  
A major current deficit in structural biology is the lack of high-resolution structures of eukaryotic membrane proteins, many of which are key drug targets for the treatment of disease. Numerous eukaryotic membrane proteins require specific lipids for their stability and activity, and efforts to crystallize and solve the structures of membrane proteins that do not address the issue of lipids frequently end in failure rather than success. To help address this problem, we have developed a sparse matrix crystallization screen consisting of 48 lipidic-sponge phase conditions. Sponge phases form liquid lipid bilayer environments which are suitable for conventional hanging- and sitting-drop crystallization experiments. Using the sponge phase screen, we obtained crystals of several different membrane proteins from bacterial and eukaryotic sources. We also demonstrate how the screen may be manipulated by incorporating specific lipids such as cholesterol; this modification led to crystals being recovered from a bacterial photosynthetic core complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号