首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The bacteriophage T4 gene 41 protein is a 5' to 3' DNA helicase which unwinds DNA ahead of the growing replication fork and, together with the T4 gene 61 protein, also functions as a primase to initiate DNA synthesis on the lagging strand. Proteolytic cleavage by trypsin approximately 20 amino acids from the COOH terminus of the 41 protein produces 41T, a 51,500-dalton fragment (possibly still associated with small COOH-terminal fragments) which still retains the ssDNA-stimulated GTPase (ATPase) activity, the 61 protein-stimulated DNA helicase activity, and the ability to act with 61 protein to synthesize pentaribonucleotide primers. In the absence of the T4 gene 32 ssDNA binding protein, the primase-helicase composed of the tryptic fragment (41T) and 61 proteins efficiently primes DNA synthesis on circular ssDNA templates by the T4 DNA polymerase and the three T4 polymerase accessory proteins. In contrast, the 41T protein is defective as a helicase or a primase component on 32 protein-covered DNA. Thus, unlike the intact protein, 41T does not support RNA-dependent DNA synthesis on 32 protein-covered ssDNA and does not stimulate strand displacement DNA synthesis on a nicked duplex DNA template. High concentrations of 32 protein strongly inhibit RNA primer synthesis with either 41 T or intact 41 protein. The 44/62 and 45 polymerase accessory proteins (and even the 44/62 proteins to some extent) substantially reverse the 32 protein inhibition of RNA primer synthesis with intact 41 protein but not with 41T protein. We propose that the COOH-terminal region of the 41 protein is required for its interaction with the T4 polymerase accessory proteins, permitting the synthesis and utilization of RNA primers and helicase function within the T4 replication complex. When this region is altered, as in 41T protein, the protein is unable to assemble a functional primase-helicase in the replication complex. An easy and rapid purification of T4 41 protein produced by a plasmid encoding this gene (Hinton, D. M., Silver, L. L., and Nossal, N. G. (1985) J. Biol. Chem. 260, 12851-12857) is also described.  相似文献   

2.
The CD and absorption (OD) spectra of single-stranded nucleic acids in complex with the helix-destabilizing protein of either bacteriophage T4 (GP32) or bacteriophage fd (GP5) show similar and unusual features for all polynucleotides investigated. The change in the CD spectra between 310 and 240 nm is in all cases characterized by a considerable decrease in the positive band, while the negative band (if present) remains relatively intense. These changes are different from those due to temperature or solvent denaturation and, moreover, cannot be induced by the binding of simple oligopeptides. Absorption measurements show that all polynucleotides remain hypochromic in the complex. Both CD and OD spectra point to a specific and probably similar conformation in complex for all polynucleotides with substantial interactions between the bases. The spectral properties are almost temperature independent (0–40°C). Therefore, we conclude that the conformation must be regular and rigid. To investigate the relation between these optical properties and the specific polynucleotide structure, CD and OD spectra were calculated for an adenine hexamer over a wide range of the conformational parameters. It appears that the calculated CD intensity is not very sensitive to an increase in the axial increment and that many different conformations can give rise to more or less similar CD spectra. However, simulation of the very nonconservative experimental CD spectrum of the poly(rA)-GP32 complex requires that the conformation satisfies two criteria: (1) a considerable tilt of the bases (? – 10°) in combination with (2) a small rotation per base (?20°) and/or a position of the bases close to the helix axis (dx ? 0 Å). Such conformations can also explain the observed hyperchromism upon binding of GP32 to poly(rA)/(dA). Very similar structural characteristics also account for the optical properties of the complexes with GP5. These are discussed as an alternative to the structure suggested by Alma-Zeestraten for poly(dA) in the complex [N. C. M. Alma-Zeestraten (1982) Doctoral thesis Catholic University, Nijmegen, The Netherlands]. The secondary structure proposed in this work can be reconciled with the overall dimensions of the complex, assuming that the polynucleotide helix is further organized in a superhelix.  相似文献   

3.
Gene 32 protein (g32P), the single-stranded (ss) DNA binding protein from bacteriophage T4, is a zinc metalloprotein. The intrinsic zinc is one of the factors required for the protein to bind cooperatively to a ssDNA lattice. We have used differential scanning calorimetry to determine how the thermodynamic parameters characterizing the denaturation of g32P are affected by removal or substitution of the intrinsic zinc. Over a wide concentration range (1-10 mg/mL), the native Zn(II) protein unfolds at a tm of 55 degrees C with an associated mean enthalpy change of 139 kcal mol-1. Under the same conditions, the metal-free apoprotein denatures over a relatively broader temperature range centered at 49 degrees C, with a mean enthalpy change of 84 kcal mol-1. Substitution of Zn(II) in g32P by either Cd(II) or Co(II) does not significantly change the enthalpy of denaturation but does affect the thermal stability of the protein. All metallo forms of g32P when bound to poly(dT) undergo highly cooperative denaturational transitions characterized by asymmetric differential scanning calorimetry peaks with increases in tm of 4-5 degrees C compared to the unliganded metalloprotein. Removal of the metal ion from g32P significantly reduces the cooperativity of binding to poly(dT) [Giedroc, D. P., Keating, K. M., Williams, K. R., & Coleman, J. E. (1987) Biochemistry 26, 5251-5259], and presumably as a consequence of this, apo-g32P shows no change in either the shape or the midpoint of the thermal transition on binding to poly(dT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Our laboratory has reported data suggesting a role for T4 phage gene 32 single-stranded DNA-binding protein in organizing a complex of deoxyribonucleotide-synthesizing enzymes at the replication fork. In this article we examined the effects of gene 32 ablation on the association of these enzymes with DNA-protein complexes. These experiments showed several deoxyribonucleotide-synthesizing enzymes to be present in DNA-protein complexes, with some of these associations being dependent on gene 32 protein. To further understand the role of gp32, we created amber mutations at codons 24 and 204 of gene 32, which encodes a 301-residue protein. We used the newly created mutants along with several experimental approaches--DNA-cellulose chromatography, immunoprecipitation, optical biosensor analysis and glutathione-S-transferase pulldowns--to identify relevant protein-protein and protein-DNA interactions. These experiments identified several proteins whose interactions with DNA depend on the presence of intact gp32, notably thymidylate synthase, dihydrofolate (DHF) reductase, ribonucleotide reductase (RNR) and Escherichia coli nucleoside diphosphate (NDP) kinase, and they also demonstrated direct associations between gp32 and RNR and NDP kinase, but not dCMP hydroxymethylase, deoxyribonucleoside monophosphate kinase, or DHF reductase. Taken together, the results support the hypothesis that the gene 32 protein helps to recruit enzymes of deoxyribonucleoside triphosphates synthesis to DNA replication sites.  相似文献   

5.
Regulation of the synthesis of bacteriophage T4 gene 32 protein   总被引:27,自引:0,他引:27  
The synthesis of T4 gene 32 product (P32) has been followed by gel electrophoresis of infected cell lysates. In wild-type infections, its synthesis starts soon after infection and begins to diminish about the time late gene expression commences. The absence of functional P32 results in a marked increase in the amount of the non-functional P32 synthesized. For example, infections of T4 mutants which contain a nonsense mutation in gene 32 produce the nonsense fragment at more than ten times the maximum rate of synthesis of the gene product observed in wild-type infections. All of the temperature-sensitive mutants in gene 32 that were tested also overproduce this product at the non-permissive temperature. This increased synthesis of the non-functional product is recessive, since mixed infections (wild-type, gene 32 nonsense mutant) fail to overproduce the nonsense fragment.Mutations in genes required for late gene expression (genes 33 and 53) as well as some genes required for normal DNA synthesis also result in increased production of P32. The overproduction in such infections is dependent on DNA synthesis; in the absence of DNA synthesis no overproduction occurs. This contrasts with the overproduction resulting from the absence of functional P32 which is not dependent on DNA synthesis.These results are compatible with a model for the regulation of expression of gene 32 in which the synthesis of P32 is either directly or indirectly controlled by its own function. Thus, in the absence of P32 function the expression of this gene is increased as is manifest by the high rate of P32 synthesis. It is further suggested that in infections defective in late gene expression and consequently in the maturation of replicated DNA, the increased P32 production is caused by the large expansion of the DNA pool. This DNA is presumed to compete for active P32 by binding it non-specifically to single-stranded regions, thus reducing the amount of P32 free to block gene 32 expression. Similarly, the aberrant DNA synthesized following infections with mutants in genes 41, 56, 58, 60 and 30, although quantitatively less than that produced in the maturation defective infections, can probably bind large quantities of P32 to single-stranded regions resulting in increased P32 synthesis.  相似文献   

6.
T Pan  D P Giedroc  J E Coleman 《Biochemistry》1989,28(22):8828-8832
Gene 32 protein (g32P), the single-stranded DNA binding protein from bacteriophage T4, contains 1 mol of Zn(II)/mol bound in a tetrahedral ligand field. 113Cd NMR studies of Cd-substituted wild-type and mutant (Cys166----Ser166) g32Ps show Cys77, Cys87, and Cys90 to provide three sulfur donor atoms as ligands to the metal ion [Giedroc, D. P., Johnson, B. A., Armitage, I. M., & Coleman, J. E. (1989) Biochemistry 28, 2410]. Proton NMR signals from the His and Trp side chains of the protein have been followed as a function of pH and metal ion removal by biosynthesizing the protein with amino acids carrying protons at specific positions in a background of perdeuteriated aromatic amino acids. Only one of the two pairs of His resonances (from His64 and His81) titrates over the pH range 8.0-5.9. The nontitrating His side chain is most likely ligated to the metal ion. Upon Zn(II) removal, 1H NMR spectra of the fully protonated g32P-(A + B) exhibit substantial signal broadening in several regions of the spectrum, while the His 2,4-1H resonances are broadened beyond detection. The 1H NMR spectral characteristics of the original protein are restored by reconstitution with stoichiometric Zn(II). The broadening of the 1H NMR signals is not due to oligomerization of the protein, since small-angle X-ray scattering experiments show that the average radius of gyration of the apo-g32P-(A + B) is 25.0 A and that of the reconstituted Zn(II)-g32P-(A + B) is 31.2 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The function of zinc in gene 32 protein from T4   总被引:4,自引:0,他引:4  
Gene 32 protein (g32P), the single-stranded DNA binding protein from bacteriophage T4, contains 1 mol of Zn(II) bound in a tetrahedral complex to -S- ligands, proposed on spectral evidence to include Cys-77, Cys-87, and Cys-90 [Giedroc, D. P., Keating, K. M., Williams, K. R., Konigsberg, W. H., & Coleman, J. E. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8452]. The Zn(II) can be completely removed by treatment with the mercurial reagent p-(hydroxymercuri)benzenesulfonate and ethylenediaminetetraacetic acid. The resultant apo-g32P is rapidly digested by trypsin in contrast to the zinc protein which undergoes specific limited proteolysis to yield a resistant DNA-binding core. Rebinding of Zn(II) to the apoprotein restores the same limited susceptibility to proteolysis displayed by the native Zn(II) protein. In the presence of 150 mM NaCl, Zn(II) g32P reduces the melting temperature Tm of poly[d(A-T)] by 47 degrees C, while apo-g32P is unable to melt poly[d(A-T)] at this salt concentration, as the protein thermally unfolds before melting can take place. At 25 mM NaCl, however, apo-g32P lowers the Tm of poly[d(A-T)] by 36 degrees C, but the melting curve is broad compared to the steep cooperative melting induced by Zn(II) g32P. Association constants Ka calculated from the poly[d(A-T)] melting curves for Zn(II) and apo-g32P differ by 3 orders of magnitude, 4.8 X 10(10) M-1 and 4.3 X 10(7) M-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
10.
The gene 32 protein (gp32) of bacteriophage T4 is the essential single-stranded DNA (ssDNA)-binding protein required for phage DNA replication and recombination. gp32 binds ssDNA with high affinity and cooperativity, forming contiguous clusters that optimally configure the ssDNA for recognition by DNA polymerase or recombination enzymes. The precise roles of gp32 affinity and cooperativity in promoting replication and recombination have yet to be defined, however. Previous work established that the N-terminal "B-domain" of gp32 is essential for cooperativity and that point mutations at Arg(4) and Lys(3) positions have varying and dramatic effects on gp32-ssDNA interactions. Therefore, we examined the effects of six different gp32 B-domain mutants on T4 in vitro systems for DNA synthesis and homologous pairing. We find that the B-domain is essential for gp32's stimulation of these reactions. The stimulatory efficacy of gp32 B-domain mutants generally correlates with the hierarchy of relative ssDNA binding affinities, i.e. wild-type gp32 approximately R4K > K3A approximately R4Q > R4T > R4G gp32-B. However, the functional defect of a particular mutant is often greater than can be explained simply by its ability to saturate the ssDNA at equilibrium, suggesting additional defects in the proper assembly and activity of DNA polymerase and recombinase complexes on ssDNA, which may derive from a decreased lifetime of gp32-ssDNA clusters.  相似文献   

11.
The role of the bacteriophage T4 gene 32 protein in homologous pairing   总被引:2,自引:0,他引:2  
The gene 32 protein of the bacteriophage T4 is required for efficient genetic recombination in infected Eschericia coli cells and strongly stimulates in vitro pairing catalyzed by the phage uvsX protein, a RecA-like strand transferase. This helix-destabilizing factor is known to bind tightly and cooperatively to single-stranded DNA and to interact specifically with the uvsX protein as well as other phage gene products. However, its detailed role in homologous pairing is not well understood. I show here that when the efficiency of uvsX protein-mediated pairing is examined at different gene 32 protein and duplex DNA concentrations, a correlation between the two is found, suggesting that the two interact in a functionally important manner during the reaction. These and other data are consistent with a model in which the gene 32 protein binds to the strand displaced from the recipient duplex during pairing, thereby stabilizing the heteroduplex product. An alternative model in which the gene 32 protein replaces UvsX on the invading strand, thereby freeing the strand transferase to bind to the displaced strand, is also considered.  相似文献   

12.
Denaturation of T4 DNA by an in vitro processed gene 32-protein   总被引:1,自引:0,他引:1  
J Hosoda  B Takacs  C Brack 《FEBS letters》1974,47(2):338-342
  相似文献   

13.
14.
Bacteriophage T4 gene 32 protein, a model for single-strand specific nucleic acid-binding proteins, consists of three structurally and functionally distinct domains. We have studied the effects of the N and C domains on the protein structure and its nucleic acid-interactive properties. Although the presence of the C domain decreases the proteolytic susceptibility of the core (central) domain, quenching of the core tryptophan fluorescence by iodide is unaltered by the presence of the terminal domains. These results suggest that the overall conformation of the core domain remains largely independent of the flanking domains. Removal of the N or the C terminus does not abolish the DNA renaturation activity of the protein. However, intact protein and its three truncated forms differ in DNA helix-destabilizing activity. The C domain alone is responsible for the kinetic barrier to natural DNA helix destabilization seen with intact protein. Intact protein and core domain potentiate the DNA helix-destabilizing activity of truncated protein lacking only the C domain (*I), enhancing the observed hyperchromicity while increasing the melting temperature. Proteolysis experiments suggest that the affinity of core domain for single-stranded DNA is increased in the presence of *I. We propose that *I can "mingle" with intact protein or core domain while bound to single-stranded DNA.  相似文献   

15.
16.
Joseph Germino  Deepak Bastia 《Cell》1981,23(3):681-687
The replication terminus of the drug resistance factor R6K has been cloned into the plasmid vectors pBR313 and pBR322. When the exogenously added DNA is replicated in vitro using cell extracts prepared from Escherichia coli, the plasmid replication terminus temporarily arrests the progression of the unidirectionally moving replication fork at or near the cloned terminator sequence. When the relative location of the terminator sequence is changed with respect to the replication origin, the point of arrest of the replication fork shifts correspondingly to the new location of the terminator. Termination of replication takes place in vitro regardless of whether the cell extracts used in the in vitro reaction are prepared from E. coli with a resident terminus sequence containing plasmid. From these observations we conclude that the termination of replication in vitro is identical or very similar to that observed in vivo, membrane association is not necessary for the activity of the replication terminus and the terminus sequence does not code for a transacting factor necessary for termination of replication. Therefore, any transacting factor which may be needed for the termination of replication must be coded by the host chromosome.  相似文献   

17.
The bacteriophage T4 genome is believed to encode all of the proteins needed for the replication of its own DNA. Included among these proteins are the "polymerase accessory proteins", the products of T4 genes 44, 62 and 45. The first two of these genes specify the synthesis of the 44/62 protein complex, which is here shown to be a DNA-dependent ATPase, hydrolyzing either ATP or dATP to the corresponding nucleoside diphosphate and releasing inorganic phosphate. This nucleotide hydrolysis is greatly stimulated by addition of the gene 45 protein and by single-stranded DNA termini. A rapid micro DNA-cellulose assay is introduced and used to measure accessory protein binding to the complex of T4 gene 32 protein and single-stranded DNA. In the presence of ATP, the 44/62 protein binds to this complex but not to naked DNA, while the 45 protein requires both the 32 protein and the 44/62 protein for detectable binding.  相似文献   

18.
This study reports on various parameters which affect the binding stoichiometry for complexes of bacteriophage T4 gene 32 protein (P32) and single stranded polynucleotides (determined by UV absorbance and fluorescence quenching) and presents results of a quantitative electron spin resonance assay to determine physiologically effective binding affinity differences of nucleic acid binding proteins. The assay employs macromolecular spin probes (spin-labeled nucleic acids) which are used to determine the fraction of saturation in competition experiments with unlabeled nucleic acids. It was found that the fraction of complexed spin-labeled polynucleotides can be directly monitored by ESR with a two-component analysis approach when ligands such as poly(L-lysine), gene 5 protein (P5) of filamentous bacteriophage fd, and gene 32 protein (P32) of bacteriophage T4 are used. The ESR data unequivocally show that: 1) the binding stoichiometry for poly(L-lysine), P5 and P32 is nucleotide/lysine, 4 nucleotides/P5 monomer, and 10 nucleotides/P32 monomer, respectively; and 2) under physiologically relevant buffer conditions the relative affinity of P32 in the cooperative binding mode for polythymidylic acid is about 4 times greater than for polydeoxyinosinic acid and about 12 times greater than for polyinosinic acid, and the relative affinity of P32 for polydeoxyinosinic acid is about 3 times greater than for polyinosinic acid.  相似文献   

19.
Bacteriophage T4 UvsY is a recombination mediator protein that promotes assembly of the UvsX-ssDNA presynaptic filament. UvsY helps UvsX to displace T4 gene 32 protein (gp32) from ssDNA, a reaction necessary for proper formation of the presynaptic filament. Here we use DNA stretching to examine UvsY interactions with single DNA molecules in the presence and absence of gp32 and a gp32 C-terminal truncation (*I), and show that in both cases UvsY is able to destabilize gp32-ssDNA interactions. In these experiments UvsY binds more strongly to dsDNA than ssDNA due to its inability to wrap ssDNA at high forces. To support this hypothesis, we show that ssDNA created by exposure of stretched DNA to glyoxal is strongly wrapped by UvsY, but wrapping occurs only at low forces. Our results demonstrate that UvsY interacts strongly with stretched DNA in the absence of other proteins. In the presence of gp32 and *I, UvsY is capable of strongly destabilizing gp32-DNA complexes in order to facilitate ssDNA wrapping, which in turn prepares the ssDNA for presynaptic filament assembly in the presence of UvsX. Thus, UvsY mediates UvsX binding to ssDNA by converting rigid gp32-DNA filaments into a structure that can be strongly bound by UvsX.  相似文献   

20.
We have used fluorescence spectroscopy to investigate the binding of gene 32 protein from bacteriophage T4 to DNA which has been chemically modified with carcinogens or antitumor drugs. This protein exhibits a high specificity for single-stranded nucleic acids and binds more efficiently to DNA modified either with cis-diaminodichloroplatinum(II) or with aminofluorene derivatives than to native DNA. This increased affinity is related to the formation of locally unpaired regions which are strong binding sites for the single-strand binding protein. In contrast, gene 32 protein has the same affinity for native DNA, DNA containing methylated purines and DNA that has reacted with trans-diaminodichloroplatinum(II) or with chlorodiethylenetriaminoplatinum(II) chloride. These types of damage do not induce a sufficient structural change to allow gene 32 protein binding. Depurination of DNA does not create binding sites for the T4 gene 32 protein but nicked apurinic sites are strong ligands for the protein. This T4 single-strand binding protein does not exhibit a significantly increased affinity for nicked DNA as compared with native DNA. These results are discussed with respect to the recognition of DNA damage by proteins involved in DNA repair and to the possible role of single-strand binding proteins in DNA repair mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号